false
false
0
The new Blockscout UI is now open source! Learn how to deploy it here

Contract Address Details

0x00f9f60C79e38c08b785eE4F1a849900693C6630

Contract Name
Risc0Verifier
Creator
0x4779d1–4df7b8 at 0x65d50a–e9bc1d
Balance
0 ETH
Tokens
Fetching tokens...
Transactions
Fetching transactions...
Transfers
Fetching transfers...
Gas Used
Fetching gas used...
Last Balance Update
9127
Warning! Contract bytecode has been changed and doesn't match the verified one. Therefore, interaction with this smart contract may be risky.
Contract name:
Risc0Verifier




Optimization enabled
true
Compiler version
v0.8.30+commit.73712a01




Optimization runs
200
EVM Version
prague




Verified at
2025-12-15T12:41:44.878470Z

Constructor Arguments

0x0000000000000000000000000000000000000000000000000000000000028c5900000000000000000000000010aeafac83d48e2f9ac4baaf94311c45face14040000000000000000000000004779d18931b35540f84b0cd0e9633855b84df7b8

Arg [0] (uint64) : 167001
Arg [1] (address) : 0x10aeafac83d48e2f9ac4baaf94311c45face1404
Arg [2] (address) : 0x4779d18931b35540f84b0cd0e9633855b84df7b8

              

contracts/layer1/verifiers/Risc0Verifier.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;

import { IProofVerifier } from "./IProofVerifier.sol";
import { LibPublicInput } from "./LibPublicInput.sol";
import { Ownable2Step } from "@openzeppelin/contracts/access/Ownable2Step.sol";
import { IRiscZeroVerifier } from "@risc0/contracts/IRiscZeroVerifier.sol";

/// @title Risc0Verifier
/// @custom:security-contact security@taiko.xyz
contract Risc0Verifier is IProofVerifier, Ownable2Step {
    bytes32 internal constant RISCZERO_GROTH16_VERIFIER = bytes32("risc0_groth16_verifier");

    // [32, 0, 0, 0] -- big-endian uint32(32) for hash bytes len
    bytes private constant FIXED_JOURNAL_HEADER = hex"20000000";
    uint64 public immutable taikoChainId;
    address public immutable riscoGroth16Verifier;

    /// @notice Trusted imageId mapping
    mapping(bytes32 imageId => bool trusted) public isImageTrusted;

    uint256[49] private __gap;

    /// @dev Emitted when a trusted image is set / unset.
    /// @param imageId The id of the image
    /// @param trusted True if trusted, false otherwise
    event ImageTrusted(bytes32 imageId, bool trusted);

    error RISC_ZERO_INVALID_BLOCK_PROOF_IMAGE_ID();
    error RISC_ZERO_INVALID_AGGREGATION_IMAGE_ID();
    error RISC_ZERO_INVALID_PROOF();
    error RISC_ZERO_INVALID_CHAIN_ID();
    error RISC_ZERO_INVALID_GROTH16_VERIFIER();

    constructor(uint64 _taikoChainId, address _riscoGroth16Verifier, address _owner) {
        require(_taikoChainId != 0, RISC_ZERO_INVALID_CHAIN_ID());
        require(_riscoGroth16Verifier != address(0), RISC_ZERO_INVALID_GROTH16_VERIFIER());
        taikoChainId = _taikoChainId;
        riscoGroth16Verifier = _riscoGroth16Verifier;

        _transferOwnership(_owner);
    }

    /// @notice Sets/unsets an the imageId as trusted entity
    /// @param _imageId The id of the image.
    /// @param _trusted True if trusted, false otherwise.
    function setImageIdTrusted(bytes32 _imageId, bool _trusted) external onlyOwner {
        isImageTrusted[_imageId] = _trusted;
        emit ImageTrusted(_imageId, _trusted);
    }

    /// @inheritdoc IProofVerifier
    function verifyProof(
        uint256, /* _proposalAge */
        bytes32 _aggregatedProvingHash,
        bytes calldata _proof
    )
        external
        view
    {
        // Decode will throw if not proper length/encoding
        (bytes memory seal, bytes32 blockImageId, bytes32 aggregationImageId) =
            abi.decode(_proof, (bytes, bytes32, bytes32));

        // Check if the aggregation program is trusted
        require(isImageTrusted[aggregationImageId], RISC_ZERO_INVALID_AGGREGATION_IMAGE_ID());
        // Check if the block proving program is trusted
        require(isImageTrusted[blockImageId], RISC_ZERO_INVALID_BLOCK_PROOF_IMAGE_ID());

        bytes32 publicInput = LibPublicInput.hashPublicInputs(
            _aggregatedProvingHash, address(this), address(0), taikoChainId
        );

        bytes32 r0AggregationPublicInput =
            LibPublicInput.hashZKAggregationPublicInputs(blockImageId, publicInput);

        // journalDigest is the sha256 hash of the hashed public input
        bytes32 journalDigest = sha256(abi.encodePacked(r0AggregationPublicInput));

        // call risc0 verifier contract
        (bool success,) = riscoGroth16Verifier.staticcall(
            abi.encodeCall(IRiscZeroVerifier.verify, (seal, aggregationImageId, journalDigest))
        );
        require(success, RISC_ZERO_INVALID_PROOF());
    }
}
        

contracts/layer1/verifiers/IProofVerifier.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;

/// @title IProofVerifier
/// @notice Interface for verifying validity proofs for state transitions
/// @custom:security-contact security@taiko.xyz
interface IProofVerifier {
    /// @notice Verifies a validity proof for a state transition
    /// @dev This function must revert if the proof is invalid
    /// @param _proposalAge The age in seconds of the proposal being proven. Only set for
    ///        single-proposal proofs (calculated as block.timestamp - proposal.timestamp).
    ///        For multi-proposal batches, this is always 0, meaning "not applicable".
    ///        Verifiers should interpret _proposalAge == 0 as "not applicable" rather than
    ///        "instant proof". This parameter enables age-based verification logic, such as
    ///        detecting and handling prover-killer proposals differently.
    /// @param _commitmentHash Hash of the last proposal hash and commitment data
    /// @param _proof The proof data
    function verifyProof(
        uint256 _proposalAge,
        bytes32 _commitmentHash,
        bytes calldata _proof
    )
        external
        view;
}
          

contracts/layer1/verifiers/LibPublicInput.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;

import { EfficientHashLib } from "solady/src/utils/EfficientHashLib.sol";

/// @title LibPublicInput
/// @notice A library for handling hashing the so-called public input hash, used by sgx and zk
/// proofs.
/// @custom:security-contact security@taiko.xyz
library LibPublicInput {
    /// @notice Hashes the public input for the proof verification.
    /// @param _aggregatedProvingHash The aggregated proving hash from the inbox.
    /// @param _verifierContract The contract address which as current verifier.
    /// @param _proofSigner The address of the instance that signed this proof. For SGX it is the
    /// signer address, for ZK this variable is not used and must have value address(0).
    /// @param _chainId The chain id.
    /// @return The public input hash.
    function hashPublicInputs(
        bytes32 _aggregatedProvingHash,
        address _verifierContract,
        address _proofSigner,
        uint64 _chainId
    )
        internal
        pure
        returns (bytes32)
    {
        require(_aggregatedProvingHash != bytes32(0), InvalidAggregatedProvingHash());
        return EfficientHashLib.hash(
            bytes32("VERIFY_PROOF"),
            bytes32(uint256(_chainId)),
            bytes32(uint256(uint160(_verifierContract))),
            _aggregatedProvingHash,
            bytes32(uint256(uint160(_proofSigner)))
        );
    }

    /// @dev Hashes the public input for the ZK aggregation proof verification,
    ///         which contains the sub image id to be aggregated for security.
    /// @param _blockProvingProgram The proving program identifier.
    /// @param _aggregatedProvingHash The aggregated proving hash from the inbox.
    /// @return The ZK aggregation public input hash.
    function hashZKAggregationPublicInputs(
        bytes32 _blockProvingProgram,
        bytes32 _aggregatedProvingHash
    )
        internal
        pure
        returns (bytes32)
    {
        return EfficientHashLib.hash(_blockProvingProgram, _aggregatedProvingHash);
    }

    // ---------------------------------------------------------------
    // Errors
    // ---------------------------------------------------------------

    error InvalidAggregatedProvingHash();
}
          

node_modules/@openzeppelin/contracts/access/Ownable.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}
          

node_modules/@openzeppelin/contracts/access/Ownable2Step.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable2Step.sol)

pragma solidity ^0.8.0;

import "./Ownable.sol";

/**
 * @dev Contract module which provides access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership} and {acceptOwnership}.
 *
 * This module is used through inheritance. It will make available all functions
 * from parent (Ownable).
 */
abstract contract Ownable2Step is Ownable {
    address private _pendingOwner;

    event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Returns the address of the pending owner.
     */
    function pendingOwner() public view virtual returns (address) {
        return _pendingOwner;
    }

    /**
     * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual override onlyOwner {
        _pendingOwner = newOwner;
        emit OwnershipTransferStarted(owner(), newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual override {
        delete _pendingOwner;
        super._transferOwnership(newOwner);
    }

    /**
     * @dev The new owner accepts the ownership transfer.
     */
    function acceptOwnership() public virtual {
        address sender = _msgSender();
        require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner");
        _transferOwnership(sender);
    }
}
          

node_modules/@openzeppelin/contracts/utils/Context.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}
          

node_modules/risc0-ethereum/contracts/src/IRiscZeroVerifier.sol

// Copyright 2025 RISC Zero, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// SPDX-License-Identifier: Apache-2.0

pragma solidity ^0.8.9;

import {reverseByteOrderUint32} from "./Util.sol";

/// @notice A receipt attesting to a claim using the RISC Zero proof system.
/// @dev A receipt contains two parts: a seal and a claim.
///
/// The seal is a zero-knowledge proof attesting to knowledge of a witness for the claim. The claim
/// is a set of public outputs, and for zkVM execution is the hash of a `ReceiptClaim` struct.
///
/// IMPORTANT: The `claimDigest` field must be a hash computed by the caller for verification to
/// have meaningful guarantees. Treat this similar to verifying an ECDSA signature, in that hashing
/// is a key operation in verification. The most common way to calculate this hash is to use the
/// `ReceiptClaimLib.ok(imageId, journalDigest).digest()` for successful executions.
struct Receipt {
    bytes seal;
    bytes32 claimDigest;
}

/// @notice Public claims about a zkVM guest execution, such as the journal committed to by the guest.
/// @dev Also includes important information such as the exit code and the starting and ending system
/// state (i.e. the state of memory). `ReceiptClaim` is a "Merkle-ized struct" supporting
/// partial openings of the underlying fields from a hash commitment to the full structure.
struct ReceiptClaim {
    /// @notice Digest of the SystemState just before execution has begun.
    bytes32 preStateDigest;
    /// @notice Digest of the SystemState just after execution has completed.
    bytes32 postStateDigest;
    /// @notice The exit code for the execution.
    ExitCode exitCode;
    /// @notice A digest of the input to the guest.
    /// @dev This field is currently unused and must be set to the zero digest.
    bytes32 input;
    /// @notice Digest of the Output of the guest, including the journal
    /// and assumptions set during execution.
    bytes32 output;
}

library ReceiptClaimLib {
    using OutputLib for Output;
    using SystemStateLib for SystemState;

    bytes32 constant TAG_DIGEST = sha256("risc0.ReceiptClaim");

    // Define a constant to ensure hashing is done at compile time. Can't use the
    // SystemStateLib.digest method here because the Solidity compiler complains.
    bytes32 constant SYSTEM_STATE_ZERO_DIGEST = 0xa3acc27117418996340b84e5a90f3ef4c49d22c79e44aad822ec9c313e1eb8e2;

    /// @notice Construct a ReceiptClaim from the given imageId and journalDigest.
    ///         Returned ReceiptClaim will represent a successful execution of the zkVM, running
    ///         the program committed by imageId and resulting in the journal specified by
    ///         journalDigest.
    /// @param imageId The identifier for the guest program.
    /// @param journalDigest The SHA-256 digest of the journal bytes.
    /// @dev Input hash and postStateDigest are set to all-zeros (i.e. no committed input, or
    ///      final memory state), the exit code is (Halted, 0), and there are no assumptions
    ///      (i.e. the receipt is unconditional).
    function ok(bytes32 imageId, bytes32 journalDigest) internal pure returns (ReceiptClaim memory) {
        return ReceiptClaim(
            imageId,
            SYSTEM_STATE_ZERO_DIGEST,
            ExitCode(SystemExitCode.Halted, 0),
            bytes32(0),
            Output(journalDigest, bytes32(0)).digest()
        );
    }

    function digest(ReceiptClaim memory claim) internal pure returns (bytes32) {
        return sha256(
            abi.encodePacked(
                TAG_DIGEST,
                // down
                claim.input,
                claim.preStateDigest,
                claim.postStateDigest,
                claim.output,
                // data
                uint32(claim.exitCode.system) << 24,
                uint32(claim.exitCode.user) << 24,
                // down.length
                uint16(4) << 8
            )
        );
    }
}

/// @notice Commitment to the memory state and program counter (pc) of the zkVM.
/// @dev The "pre" and "post" fields of the ReceiptClaim are digests of the system state at the
///      start are stop of execution. Programs are loaded into the zkVM by creating a memory image
///      of the loaded program, and creating a system state for initializing the zkVM. This is
///      known as the "image ID".
struct SystemState {
    /// @notice Program counter.
    uint32 pc;
    /// @notice Root hash of a merkle tree which confirms the integrity of the memory image.
    bytes32 merkle_root;
}

library SystemStateLib {
    bytes32 constant TAG_DIGEST = sha256("risc0.SystemState");

    function digest(SystemState memory state) internal pure returns (bytes32) {
        return sha256(
            abi.encodePacked(
                TAG_DIGEST,
                // down
                state.merkle_root,
                // data
                reverseByteOrderUint32(state.pc),
                // down.length
                uint16(1) << 8
            )
        );
    }
}

/// @notice Exit condition indicated by the zkVM at the end of the guest execution.
/// @dev Exit codes have a "system" part and a "user" part. Semantically, the system part is set to
/// indicate the type of exit (e.g. halt, pause, or system split) and is directly controlled by the
/// zkVM. The user part is an exit code, similar to exit codes used in Linux, chosen by the guest
/// program to indicate additional information (e.g. 0 to indicate success or 1 to indicate an
/// error).
struct ExitCode {
    SystemExitCode system;
    uint8 user;
}

/// @notice Exit condition indicated by the zkVM at the end of the execution covered by this proof.
/// @dev
/// `Halted` indicates normal termination of a program with an interior exit code returned from the
/// guest program. A halted program cannot be resumed.
///
/// `Paused` indicates the execution ended in a paused state with an interior exit code set by the
/// guest program. A paused program can be resumed such that execution picks up where it left
/// of, with the same memory state.
///
/// `SystemSplit` indicates the execution ended on a host-initiated system split. System split is
/// mechanism by which the host can temporarily stop execution of the execution ended in a system
/// split has no output and no conclusions can be drawn about whether the program will eventually
/// halt. System split is used in continuations to split execution into individually provable segments.
enum SystemExitCode {
    Halted,
    Paused,
    SystemSplit
}

/// @notice Output field in the `ReceiptClaim`, committing to a claimed journal and assumptions list.
struct Output {
    /// @notice Digest of the journal committed to by the guest execution.
    bytes32 journalDigest;
    /// @notice Digest of the ordered list of `ReceiptClaim` digests corresponding to the
    /// calls to `env::verify` and `env::verify_integrity`.
    /// @dev Verifying the integrity of a `Receipt` corresponding to a `ReceiptClaim` with a
    /// non-empty assumptions list does not guarantee unconditionally any of the claims over the
    /// guest execution (i.e. if the assumptions list is non-empty, then the journal digest cannot
    /// be trusted to correspond to a genuine execution). The claims can be checked by additional
    /// verifying a `Receipt` for every digest in the assumptions list.
    bytes32 assumptionsDigest;
}

library OutputLib {
    bytes32 constant TAG_DIGEST = sha256("risc0.Output");

    function digest(Output memory output) internal pure returns (bytes32) {
        return sha256(
            abi.encodePacked(
                TAG_DIGEST,
                // down
                output.journalDigest,
                output.assumptionsDigest,
                // down.length
                uint16(2) << 8
            )
        );
    }
}

/// @notice Error raised when cryptographic verification of the zero-knowledge proof fails.
error VerificationFailed();

/// @notice Verifier interface for RISC Zero receipts of execution.
interface IRiscZeroVerifier {
    /// @notice Verify that the given seal is a valid RISC Zero proof of execution with the
    ///     given image ID and journal digest. Reverts on failure.
    /// @dev This method additionally ensures that the input hash is all-zeros (i.e. no
    /// committed input), the exit code is (Halted, 0), and there are no assumptions (i.e. the
    /// receipt is unconditional).
    /// @param seal The encoded cryptographic proof (i.e. SNARK).
    /// @param imageId The identifier for the guest program.
    /// @param journalDigest The SHA-256 digest of the journal bytes.
    function verify(bytes calldata seal, bytes32 imageId, bytes32 journalDigest) external view;

    /// @notice Verify that the given receipt is a valid RISC Zero receipt, ensuring the `seal` is
    /// valid a cryptographic proof of the execution with the given `claim`. Reverts on failure.
    /// @param receipt The receipt to be verified.
    function verifyIntegrity(Receipt calldata receipt) external view;
}
          

node_modules/risc0-ethereum/contracts/src/Util.sol

// Copyright 2024 RISC Zero, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// SPDX-License-Identifier: Apache-2.0

pragma solidity ^0.8.9;

/// @notice reverse the byte order of the uint256 value.
/// @dev Solidity uses a big-endian ABI encoding. Reversing the byte order before encoding
/// ensure that the encoded value will be little-endian.
/// Written by k06a. https://ethereum.stackexchange.com/a/83627
function reverseByteOrderUint256(uint256 input) pure returns (uint256 v) {
    v = input;

    // swap bytes
    v = ((v & 0xFF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00) >> 8)
        | ((v & 0x00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF) << 8);

    // swap 2-byte long pairs
    v = ((v & 0xFFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000) >> 16)
        | ((v & 0x0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF) << 16);

    // swap 4-byte long pairs
    v = ((v & 0xFFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000) >> 32)
        | ((v & 0x00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF) << 32);

    // swap 8-byte long pairs
    v = ((v & 0xFFFFFFFFFFFFFFFF0000000000000000FFFFFFFFFFFFFFFF0000000000000000) >> 64)
        | ((v & 0x0000000000000000FFFFFFFFFFFFFFFF0000000000000000FFFFFFFFFFFFFFFF) << 64);

    // swap 16-byte long pairs
    v = (v >> 128) | (v << 128);
}

/// @notice reverse the byte order of the uint32 value.
/// @dev Solidity uses a big-endian ABI encoding. Reversing the byte order before encoding
/// ensure that the encoded value will be little-endian.
/// Written by k06a. https://ethereum.stackexchange.com/a/83627
function reverseByteOrderUint32(uint32 input) pure returns (uint32 v) {
    v = input;

    // swap bytes
    v = ((v & 0xFF00FF00) >> 8) | ((v & 0x00FF00FF) << 8);

    // swap 2-byte long pairs
    v = (v >> 16) | (v << 16);
}

/// @notice reverse the byte order of the uint16 value.
/// @dev Solidity uses a big-endian ABI encoding. Reversing the byte order before encoding
/// ensure that the encoded value will be little-endian.
/// Written by k06a. https://ethereum.stackexchange.com/a/83627
function reverseByteOrderUint16(uint16 input) pure returns (uint16 v) {
    v = input;

    // swap bytes
    v = (v >> 8) | ((v & 0x00FF) << 8);
}
          

node_modules/solady/src/utils/EfficientHashLib.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Library for efficiently performing keccak256 hashes.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/EfficientHashLib.sol)
/// @dev To avoid stack-too-deep, you can use:
/// ```
/// bytes32[] memory buffer = EfficientHashLib.malloc(10);
/// EfficientHashLib.set(buffer, 0, value0);
/// ..
/// EfficientHashLib.set(buffer, 9, value9);
/// bytes32 finalHash = EfficientHashLib.hash(buffer);
/// ```
library EfficientHashLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*               MALLOC-LESS HASHING OPERATIONS               */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `keccak256(abi.encode(v0))`.
    function hash(bytes32 v0) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, v0)
            result := keccak256(0x00, 0x20)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0))`.
    function hash(uint256 v0) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, v0)
            result := keccak256(0x00, 0x20)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, v1))`.
    function hash(bytes32 v0, bytes32 v1) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, v0)
            mstore(0x20, v1)
            result := keccak256(0x00, 0x40)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, v1))`.
    function hash(uint256 v0, uint256 v1) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, v0)
            mstore(0x20, v1)
            result := keccak256(0x00, 0x40)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, v1, v2))`.
    function hash(bytes32 v0, bytes32 v1, bytes32 v2) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            result := keccak256(m, 0x60)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, v1, v2))`.
    function hash(uint256 v0, uint256 v1, uint256 v2) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            result := keccak256(m, 0x60)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, v1, v2, v3))`.
    function hash(bytes32 v0, bytes32 v1, bytes32 v2, bytes32 v3)
        internal
        pure
        returns (bytes32 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            result := keccak256(m, 0x80)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, v1, v2, v3))`.
    function hash(uint256 v0, uint256 v1, uint256 v2, uint256 v3)
        internal
        pure
        returns (bytes32 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            result := keccak256(m, 0x80)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v4))`.
    function hash(bytes32 v0, bytes32 v1, bytes32 v2, bytes32 v3, bytes32 v4)
        internal
        pure
        returns (bytes32 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            result := keccak256(m, 0xa0)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v4))`.
    function hash(uint256 v0, uint256 v1, uint256 v2, uint256 v3, uint256 v4)
        internal
        pure
        returns (bytes32 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            result := keccak256(m, 0xa0)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v5))`.
    function hash(bytes32 v0, bytes32 v1, bytes32 v2, bytes32 v3, bytes32 v4, bytes32 v5)
        internal
        pure
        returns (bytes32 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            result := keccak256(m, 0xc0)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v5))`.
    function hash(uint256 v0, uint256 v1, uint256 v2, uint256 v3, uint256 v4, uint256 v5)
        internal
        pure
        returns (bytes32 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            result := keccak256(m, 0xc0)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v6))`.
    function hash(
        bytes32 v0,
        bytes32 v1,
        bytes32 v2,
        bytes32 v3,
        bytes32 v4,
        bytes32 v5,
        bytes32 v6
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            result := keccak256(m, 0xe0)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v6))`.
    function hash(
        uint256 v0,
        uint256 v1,
        uint256 v2,
        uint256 v3,
        uint256 v4,
        uint256 v5,
        uint256 v6
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            result := keccak256(m, 0xe0)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v7))`.
    function hash(
        bytes32 v0,
        bytes32 v1,
        bytes32 v2,
        bytes32 v3,
        bytes32 v4,
        bytes32 v5,
        bytes32 v6,
        bytes32 v7
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            mstore(add(m, 0xe0), v7)
            result := keccak256(m, 0x100)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v7))`.
    function hash(
        uint256 v0,
        uint256 v1,
        uint256 v2,
        uint256 v3,
        uint256 v4,
        uint256 v5,
        uint256 v6,
        uint256 v7
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            mstore(add(m, 0xe0), v7)
            result := keccak256(m, 0x100)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v8))`.
    function hash(
        bytes32 v0,
        bytes32 v1,
        bytes32 v2,
        bytes32 v3,
        bytes32 v4,
        bytes32 v5,
        bytes32 v6,
        bytes32 v7,
        bytes32 v8
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            mstore(add(m, 0xe0), v7)
            mstore(add(m, 0x100), v8)
            result := keccak256(m, 0x120)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v8))`.
    function hash(
        uint256 v0,
        uint256 v1,
        uint256 v2,
        uint256 v3,
        uint256 v4,
        uint256 v5,
        uint256 v6,
        uint256 v7,
        uint256 v8
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            mstore(add(m, 0xe0), v7)
            mstore(add(m, 0x100), v8)
            result := keccak256(m, 0x120)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v9))`.
    function hash(
        bytes32 v0,
        bytes32 v1,
        bytes32 v2,
        bytes32 v3,
        bytes32 v4,
        bytes32 v5,
        bytes32 v6,
        bytes32 v7,
        bytes32 v8,
        bytes32 v9
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            mstore(add(m, 0xe0), v7)
            mstore(add(m, 0x100), v8)
            mstore(add(m, 0x120), v9)
            result := keccak256(m, 0x140)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v9))`.
    function hash(
        uint256 v0,
        uint256 v1,
        uint256 v2,
        uint256 v3,
        uint256 v4,
        uint256 v5,
        uint256 v6,
        uint256 v7,
        uint256 v8,
        uint256 v9
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            mstore(add(m, 0xe0), v7)
            mstore(add(m, 0x100), v8)
            mstore(add(m, 0x120), v9)
            result := keccak256(m, 0x140)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v10))`.
    function hash(
        bytes32 v0,
        bytes32 v1,
        bytes32 v2,
        bytes32 v3,
        bytes32 v4,
        bytes32 v5,
        bytes32 v6,
        bytes32 v7,
        bytes32 v8,
        bytes32 v9,
        bytes32 v10
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            mstore(add(m, 0xe0), v7)
            mstore(add(m, 0x100), v8)
            mstore(add(m, 0x120), v9)
            mstore(add(m, 0x140), v10)
            result := keccak256(m, 0x160)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v10))`.
    function hash(
        uint256 v0,
        uint256 v1,
        uint256 v2,
        uint256 v3,
        uint256 v4,
        uint256 v5,
        uint256 v6,
        uint256 v7,
        uint256 v8,
        uint256 v9,
        uint256 v10
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            mstore(add(m, 0xe0), v7)
            mstore(add(m, 0x100), v8)
            mstore(add(m, 0x120), v9)
            mstore(add(m, 0x140), v10)
            result := keccak256(m, 0x160)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v11))`.
    function hash(
        bytes32 v0,
        bytes32 v1,
        bytes32 v2,
        bytes32 v3,
        bytes32 v4,
        bytes32 v5,
        bytes32 v6,
        bytes32 v7,
        bytes32 v8,
        bytes32 v9,
        bytes32 v10,
        bytes32 v11
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            mstore(add(m, 0xe0), v7)
            mstore(add(m, 0x100), v8)
            mstore(add(m, 0x120), v9)
            mstore(add(m, 0x140), v10)
            mstore(add(m, 0x160), v11)
            result := keccak256(m, 0x180)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v11))`.
    function hash(
        uint256 v0,
        uint256 v1,
        uint256 v2,
        uint256 v3,
        uint256 v4,
        uint256 v5,
        uint256 v6,
        uint256 v7,
        uint256 v8,
        uint256 v9,
        uint256 v10,
        uint256 v11
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            mstore(add(m, 0xe0), v7)
            mstore(add(m, 0x100), v8)
            mstore(add(m, 0x120), v9)
            mstore(add(m, 0x140), v10)
            mstore(add(m, 0x160), v11)
            result := keccak256(m, 0x180)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v12))`.
    function hash(
        bytes32 v0,
        bytes32 v1,
        bytes32 v2,
        bytes32 v3,
        bytes32 v4,
        bytes32 v5,
        bytes32 v6,
        bytes32 v7,
        bytes32 v8,
        bytes32 v9,
        bytes32 v10,
        bytes32 v11,
        bytes32 v12
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            mstore(add(m, 0xe0), v7)
            mstore(add(m, 0x100), v8)
            mstore(add(m, 0x120), v9)
            mstore(add(m, 0x140), v10)
            mstore(add(m, 0x160), v11)
            mstore(add(m, 0x180), v12)
            result := keccak256(m, 0x1a0)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v12))`.
    function hash(
        uint256 v0,
        uint256 v1,
        uint256 v2,
        uint256 v3,
        uint256 v4,
        uint256 v5,
        uint256 v6,
        uint256 v7,
        uint256 v8,
        uint256 v9,
        uint256 v10,
        uint256 v11,
        uint256 v12
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            mstore(add(m, 0xe0), v7)
            mstore(add(m, 0x100), v8)
            mstore(add(m, 0x120), v9)
            mstore(add(m, 0x140), v10)
            mstore(add(m, 0x160), v11)
            mstore(add(m, 0x180), v12)
            result := keccak256(m, 0x1a0)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v13))`.
    function hash(
        bytes32 v0,
        bytes32 v1,
        bytes32 v2,
        bytes32 v3,
        bytes32 v4,
        bytes32 v5,
        bytes32 v6,
        bytes32 v7,
        bytes32 v8,
        bytes32 v9,
        bytes32 v10,
        bytes32 v11,
        bytes32 v12,
        bytes32 v13
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            mstore(add(m, 0xe0), v7)
            mstore(add(m, 0x100), v8)
            mstore(add(m, 0x120), v9)
            mstore(add(m, 0x140), v10)
            mstore(add(m, 0x160), v11)
            mstore(add(m, 0x180), v12)
            mstore(add(m, 0x1a0), v13)
            result := keccak256(m, 0x1c0)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v13))`.
    function hash(
        uint256 v0,
        uint256 v1,
        uint256 v2,
        uint256 v3,
        uint256 v4,
        uint256 v5,
        uint256 v6,
        uint256 v7,
        uint256 v8,
        uint256 v9,
        uint256 v10,
        uint256 v11,
        uint256 v12,
        uint256 v13
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            mstore(add(m, 0xe0), v7)
            mstore(add(m, 0x100), v8)
            mstore(add(m, 0x120), v9)
            mstore(add(m, 0x140), v10)
            mstore(add(m, 0x160), v11)
            mstore(add(m, 0x180), v12)
            mstore(add(m, 0x1a0), v13)
            result := keccak256(m, 0x1c0)
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*             BYTES32 BUFFER HASHING OPERATIONS              */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `keccak256(abi.encode(buffer[0], .., buffer[buffer.length - 1]))`.
    function hash(bytes32[] memory buffer) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := keccak256(add(buffer, 0x20), shl(5, mload(buffer)))
        }
    }

    /// @dev Sets `buffer[i]` to `value`, without a bounds check.
    /// Returns the `buffer` for function chaining.
    function set(bytes32[] memory buffer, uint256 i, bytes32 value)
        internal
        pure
        returns (bytes32[] memory)
    {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(add(buffer, shl(5, add(1, i))), value)
        }
        return buffer;
    }

    /// @dev Sets `buffer[i]` to `value`, without a bounds check.
    /// Returns the `buffer` for function chaining.
    function set(bytes32[] memory buffer, uint256 i, uint256 value)
        internal
        pure
        returns (bytes32[] memory)
    {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(add(buffer, shl(5, add(1, i))), value)
        }
        return buffer;
    }

    /// @dev Returns `new bytes32[](n)`, without zeroing out the memory.
    function malloc(uint256 n) internal pure returns (bytes32[] memory buffer) {
        /// @solidity memory-safe-assembly
        assembly {
            buffer := mload(0x40)
            mstore(buffer, n)
            mstore(0x40, add(shl(5, add(1, n)), buffer))
        }
    }

    /// @dev Frees memory that has been allocated for `buffer`.
    /// No-op if `buffer.length` is zero, or if new memory has been allocated after `buffer`.
    function free(bytes32[] memory buffer) internal pure {
        /// @solidity memory-safe-assembly
        assembly {
            let n := mload(buffer)
            mstore(shl(6, lt(iszero(n), eq(add(shl(5, add(1, n)), buffer), mload(0x40)))), buffer)
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      EQUALITY CHECKS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `a == abi.decode(b, (bytes32))`.
    function eq(bytes32 a, bytes memory b) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := and(eq(0x20, mload(b)), eq(a, mload(add(b, 0x20))))
        }
    }

    /// @dev Returns `abi.decode(a, (bytes32)) == a`.
    function eq(bytes memory a, bytes32 b) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := and(eq(0x20, mload(a)), eq(b, mload(add(a, 0x20))))
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*               BYTE SLICE HASHING OPERATIONS                */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the keccak256 of the slice from `start` to `end` (exclusive).
    /// `start` and `end` are byte offsets.
    function hash(bytes memory b, uint256 start, uint256 end)
        internal
        pure
        returns (bytes32 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let n := mload(b)
            end := xor(end, mul(xor(end, n), lt(n, end)))
            start := xor(start, mul(xor(start, n), lt(n, start)))
            result := keccak256(add(add(b, 0x20), start), mul(gt(end, start), sub(end, start)))
        }
    }

    /// @dev Returns the keccak256 of the slice from `start` to the end of the bytes.
    function hash(bytes memory b, uint256 start) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let n := mload(b)
            start := xor(start, mul(xor(start, n), lt(n, start)))
            result := keccak256(add(add(b, 0x20), start), mul(gt(n, start), sub(n, start)))
        }
    }

    /// @dev Returns the keccak256 of the bytes.
    function hash(bytes memory b) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := keccak256(add(b, 0x20), mload(b))
        }
    }

    /// @dev Returns the keccak256 of the slice from `start` to `end` (exclusive).
    /// `start` and `end` are byte offsets.
    function hashCalldata(bytes calldata b, uint256 start, uint256 end)
        internal
        pure
        returns (bytes32 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            end := xor(end, mul(xor(end, b.length), lt(b.length, end)))
            start := xor(start, mul(xor(start, b.length), lt(b.length, start)))
            let n := mul(gt(end, start), sub(end, start))
            calldatacopy(mload(0x40), add(b.offset, start), n)
            result := keccak256(mload(0x40), n)
        }
    }

    /// @dev Returns the keccak256 of the slice from `start` to the end of the bytes.
    function hashCalldata(bytes calldata b, uint256 start) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            start := xor(start, mul(xor(start, b.length), lt(b.length, start)))
            let n := mul(gt(b.length, start), sub(b.length, start))
            calldatacopy(mload(0x40), add(b.offset, start), n)
            result := keccak256(mload(0x40), n)
        }
    }

    /// @dev Returns the keccak256 of the bytes.
    function hashCalldata(bytes calldata b) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            calldatacopy(mload(0x40), b.offset, b.length)
            result := keccak256(mload(0x40), b.length)
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      SHA2-256 HELPERS                      */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `sha256(abi.encode(b))`. Yes, it's more efficient.
    function sha2(bytes32 b) internal view returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, b)
            result := mload(staticcall(gas(), 2, 0x00, 0x20, 0x01, 0x20))
            if iszero(returndatasize()) { invalid() }
        }
    }

    /// @dev Returns the sha256 of the slice from `start` to `end` (exclusive).
    /// `start` and `end` are byte offsets.
    function sha2(bytes memory b, uint256 start, uint256 end)
        internal
        view
        returns (bytes32 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let n := mload(b)
            end := xor(end, mul(xor(end, n), lt(n, end)))
            start := xor(start, mul(xor(start, n), lt(n, start)))
            // forgefmt: disable-next-item
            result := mload(staticcall(gas(), 2, add(add(b, 0x20), start),
                mul(gt(end, start), sub(end, start)), 0x01, 0x20))
            if iszero(returndatasize()) { invalid() }
        }
    }

    /// @dev Returns the sha256 of the slice from `start` to the end of the bytes.
    function sha2(bytes memory b, uint256 start) internal view returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let n := mload(b)
            start := xor(start, mul(xor(start, n), lt(n, start)))
            // forgefmt: disable-next-item
            result := mload(staticcall(gas(), 2, add(add(b, 0x20), start),
                mul(gt(n, start), sub(n, start)), 0x01, 0x20))
            if iszero(returndatasize()) { invalid() }
        }
    }

    /// @dev Returns the sha256 of the bytes.
    function sha2(bytes memory b) internal view returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := mload(staticcall(gas(), 2, add(b, 0x20), mload(b), 0x01, 0x20))
            if iszero(returndatasize()) { invalid() }
        }
    }

    /// @dev Returns the sha256 of the slice from `start` to `end` (exclusive).
    /// `start` and `end` are byte offsets.
    function sha2Calldata(bytes calldata b, uint256 start, uint256 end)
        internal
        view
        returns (bytes32 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            end := xor(end, mul(xor(end, b.length), lt(b.length, end)))
            start := xor(start, mul(xor(start, b.length), lt(b.length, start)))
            let n := mul(gt(end, start), sub(end, start))
            calldatacopy(mload(0x40), add(b.offset, start), n)
            result := mload(staticcall(gas(), 2, mload(0x40), n, 0x01, 0x20))
            if iszero(returndatasize()) { invalid() }
        }
    }

    /// @dev Returns the sha256 of the slice from `start` to the end of the bytes.
    function sha2Calldata(bytes calldata b, uint256 start) internal view returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            start := xor(start, mul(xor(start, b.length), lt(b.length, start)))
            let n := mul(gt(b.length, start), sub(b.length, start))
            calldatacopy(mload(0x40), add(b.offset, start), n)
            result := mload(staticcall(gas(), 2, mload(0x40), n, 0x01, 0x20))
            if iszero(returndatasize()) { invalid() }
        }
    }

    /// @dev Returns the sha256 of the bytes.
    function sha2Calldata(bytes calldata b) internal view returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            calldatacopy(mload(0x40), b.offset, b.length)
            result := mload(staticcall(gas(), 2, mload(0x40), b.length, 0x01, 0x20))
            if iszero(returndatasize()) { invalid() }
        }
    }
}
          

Compiler Settings

{"viaIR":true,"remappings":["openzeppelin/=node_modules/@openzeppelin/","@openzeppelin/=node_modules/@openzeppelin/","@openzeppelin-upgrades/contracts/=node_modules/@openzeppelin/contracts-upgradeable/","@risc0/contracts/=node_modules/risc0-ethereum/contracts/src/","@solady/=node_modules/solady/","solady/src/=node_modules/solady/src/","solady/utils/=node_modules/solady/src/utils/","@optimism/=node_modules/optimism/","@sp1-contracts/=node_modules/sp1-contracts/contracts/","forge-std/=node_modules/forge-std/","@p256-verifier/contracts/=node_modules/p256-verifier/src/","@eth-fabric/urc/=node_modules/urc/src/","ds-test/=node_modules/ds-test/","src/=contracts/","test/=test/","script/=script/","optimism/=node_modules/optimism/","p256-verifier/=node_modules/p256-verifier/","risc0-ethereum/=node_modules/risc0-ethereum/","sp1-contracts/=node_modules/sp1-contracts/","urc/=node_modules/urc/"],"outputSelection":{"*":{"*":["*"],"":["*"]}},"optimizer":{"runs":200,"enabled":true},"metadata":{"useLiteralContent":false,"bytecodeHash":"ipfs","appendCBOR":true},"libraries":{"contracts/layer1/core/libs/LibInboxSetup.sol":{"LibInboxSetup":"0xf88Ef5437749A225621101BE8C1BE1A0cE967758"},"contracts/layer1/core/libs/LibForcedInclusion.sol":{"LibForcedInclusion":"0xd1a27F331c17eD8Cbb6DAbce67A42d6b8a6B0e14"}},"evmVersion":"prague"}
              

Contract ABI

[{"type":"constructor","stateMutability":"nonpayable","inputs":[{"type":"uint64","name":"_taikoChainId","internalType":"uint64"},{"type":"address","name":"_riscoGroth16Verifier","internalType":"address"},{"type":"address","name":"_owner","internalType":"address"}]},{"type":"error","name":"InvalidAggregatedProvingHash","inputs":[]},{"type":"error","name":"RISC_ZERO_INVALID_AGGREGATION_IMAGE_ID","inputs":[]},{"type":"error","name":"RISC_ZERO_INVALID_BLOCK_PROOF_IMAGE_ID","inputs":[]},{"type":"error","name":"RISC_ZERO_INVALID_CHAIN_ID","inputs":[]},{"type":"error","name":"RISC_ZERO_INVALID_GROTH16_VERIFIER","inputs":[]},{"type":"error","name":"RISC_ZERO_INVALID_PROOF","inputs":[]},{"type":"event","name":"ImageTrusted","inputs":[{"type":"bytes32","name":"imageId","internalType":"bytes32","indexed":false},{"type":"bool","name":"trusted","internalType":"bool","indexed":false}],"anonymous":false},{"type":"event","name":"OwnershipTransferStarted","inputs":[{"type":"address","name":"previousOwner","internalType":"address","indexed":true},{"type":"address","name":"newOwner","internalType":"address","indexed":true}],"anonymous":false},{"type":"event","name":"OwnershipTransferred","inputs":[{"type":"address","name":"previousOwner","internalType":"address","indexed":true},{"type":"address","name":"newOwner","internalType":"address","indexed":true}],"anonymous":false},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"acceptOwnership","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"bool","name":"trusted","internalType":"bool"}],"name":"isImageTrusted","inputs":[{"type":"bytes32","name":"imageId","internalType":"bytes32"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"owner","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"pendingOwner","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"renounceOwnership","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"riscoGroth16Verifier","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"setImageIdTrusted","inputs":[{"type":"bytes32","name":"_imageId","internalType":"bytes32"},{"type":"bool","name":"_trusted","internalType":"bool"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint64","name":"","internalType":"uint64"}],"name":"taikoChainId","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"transferOwnership","inputs":[{"type":"address","name":"newOwner","internalType":"address"}]},{"type":"function","stateMutability":"view","outputs":[],"name":"verifyProof","inputs":[{"type":"uint256","name":"","internalType":"uint256"},{"type":"bytes32","name":"_aggregatedProvingHash","internalType":"bytes32"},{"type":"bytes","name":"_proof","internalType":"bytes"}]}]
              

Contract Creation Code

Verify & Publish
0x60c0346100e557601f61087a38819003918201601f19168301916001600160401b038311848410176100e9578084926060946040528339810103126100e5578051906001600160401b038216908183036100e55761006b6040610064602084016100fd565b92016100fd565b9161007533610111565b156100d6576001600160a01b038116156100c7576100989260805260a052610111565b604051610714908161016682396080518181816101fd01526104c1015260a0518181816101ae01526105990152f35b631a0d036360e01b5f5260045ffd5b6307bfb4c760e51b5f5260045ffd5b5f80fd5b634e487b7160e01b5f52604160045260245ffd5b51906001600160a01b03821682036100e557565b600180546001600160a01b03199081169091555f80546001600160a01b03938416928116831782559192909116907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09080a356fe60806040526004361015610011575f80fd5b5f3560e01c806314bcf3dd146103a357806343f9405f14610374578063715018a61461031157806379ba5097146102485780638da5cb5b14610221578063a5a1d0c5146101dd578063be0bd3a014610199578063e30c397814610171578063ed761581146100fe5763f2fde38b14610087575f80fd5b346100fa5760203660031901126100fa576004356001600160a01b038116908190036100fa576100b5610687565b600180546001600160a01b031916821790555f80546001600160a01b0316907f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e227009080a3005b5f80fd5b346100fa5760403660031901126100fa576004356024358015158091036100fa577fd5b8667957c912ec9fd7c4447ff0ab8dd327f9a90b8eab841c77d605144337c29160409161014c610687565b815f526002602052825f2060ff1981541660ff831617905582519182526020820152a1005b346100fa575f3660031901126100fa576001546040516001600160a01b039091168152602090f35b346100fa575f3660031901126100fa576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b346100fa575f3660031901126100fa57602060405167ffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b346100fa575f3660031901126100fa575f546040516001600160a01b039091168152602090f35b346100fa575f3660031901126100fa57600154336001600160a01b03909116036102ba57600180546001600160a01b03199081169091555f805433928116831782556001600160a01b0316907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09080a3005b60405162461bcd60e51b815260206004820152602960248201527f4f776e61626c6532537465703a2063616c6c6572206973206e6f7420746865206044820152683732bb9037bbb732b960b91b6064820152608490fd5b346100fa575f3660031901126100fa57610329610687565b600180546001600160a01b03199081169091555f80549182168155906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b346100fa5760203660031901126100fa576004355f526002602052602060ff60405f2054166040519015158152f35b346100fa5760603660031901126100fa5760443560243567ffffffffffffffff82116100fa57366023830112156100fa57816004013567ffffffffffffffff81116100fa5782019160248301923684116100fa57606090829003126100fa57602481013567ffffffffffffffff81116100fa57810190836043830112156100fa5760248201356104328161066b565b926104406040519485610635565b8184526020840195604482840101116100fa57815f926044602093018837840101526064604482013591013592835f52600260205260ff60405f2054161561062657815f52600260205260ff60405f205416156106175780156106085760a090604051906b2b22a924a32cafa82927a7a360a11b825267ffffffffffffffff7f000000000000000000000000000000000000000000000000000000000000000016602083015230604083015260608201525f608082015220905f5260205260205f6040812060405183810191825283815261051c604082610635565b604051918291518091835e8101838152039060025afa156105fd575f9261059560a48594855193604051948592602084019763ab750e7560e01b8952606060248601525180938160848701528686015e8885848601015260448401526064830152601f801991011681010301601f198101835282610635565b51907f00000000000000000000000000000000000000000000000000000000000000005afa3d156105f8573d6105ca8161066b565b906105d86040519283610635565b81525f60203d92013e5b156105e957005b631113230b60e21b5f5260045ffd5b6105e2565b6040513d5f823e3d90fd5b6318e48a7560e21b5f5260045ffd5b633a4848d760e11b5f5260045ffd5b630323378b60e61b5f5260045ffd5b90601f8019910116810190811067ffffffffffffffff82111761065757604052565b634e487b7160e01b5f52604160045260245ffd5b67ffffffffffffffff811161065757601f01601f191660200190565b5f546001600160a01b0316330361069a57565b606460405162461bcd60e51b815260206004820152602060248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152fdfea2646970667358221220f13d21fc4ef9021fabad04550d02c85e053cdf7f2d3d76f759a4e7a01aa53f9c64736f6c634300081e00330000000000000000000000000000000000000000000000000000000000028c5900000000000000000000000010aeafac83d48e2f9ac4baaf94311c45face14040000000000000000000000004779d18931b35540f84b0cd0e9633855b84df7b8

Deployed ByteCode

0x60806040526004361015610011575f80fd5b5f3560e01c806314bcf3dd146103a357806343f9405f14610374578063715018a61461031157806379ba5097146102485780638da5cb5b14610221578063a5a1d0c5146101dd578063be0bd3a014610199578063e30c397814610171578063ed761581146100fe5763f2fde38b14610087575f80fd5b346100fa5760203660031901126100fa576004356001600160a01b038116908190036100fa576100b5610687565b600180546001600160a01b031916821790555f80546001600160a01b0316907f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e227009080a3005b5f80fd5b346100fa5760403660031901126100fa576004356024358015158091036100fa577fd5b8667957c912ec9fd7c4447ff0ab8dd327f9a90b8eab841c77d605144337c29160409161014c610687565b815f526002602052825f2060ff1981541660ff831617905582519182526020820152a1005b346100fa575f3660031901126100fa576001546040516001600160a01b039091168152602090f35b346100fa575f3660031901126100fa576040517f00000000000000000000000010aeafac83d48e2f9ac4baaf94311c45face14046001600160a01b03168152602090f35b346100fa575f3660031901126100fa57602060405167ffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000028c59168152f35b346100fa575f3660031901126100fa575f546040516001600160a01b039091168152602090f35b346100fa575f3660031901126100fa57600154336001600160a01b03909116036102ba57600180546001600160a01b03199081169091555f805433928116831782556001600160a01b0316907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09080a3005b60405162461bcd60e51b815260206004820152602960248201527f4f776e61626c6532537465703a2063616c6c6572206973206e6f7420746865206044820152683732bb9037bbb732b960b91b6064820152608490fd5b346100fa575f3660031901126100fa57610329610687565b600180546001600160a01b03199081169091555f80549182168155906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b346100fa5760203660031901126100fa576004355f526002602052602060ff60405f2054166040519015158152f35b346100fa5760603660031901126100fa5760443560243567ffffffffffffffff82116100fa57366023830112156100fa57816004013567ffffffffffffffff81116100fa5782019160248301923684116100fa57606090829003126100fa57602481013567ffffffffffffffff81116100fa57810190836043830112156100fa5760248201356104328161066b565b926104406040519485610635565b8184526020840195604482840101116100fa57815f926044602093018837840101526064604482013591013592835f52600260205260ff60405f2054161561062657815f52600260205260ff60405f205416156106175780156106085760a090604051906b2b22a924a32cafa82927a7a360a11b825267ffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000028c5916602083015230604083015260608201525f608082015220905f5260205260205f6040812060405183810191825283815261051c604082610635565b604051918291518091835e8101838152039060025afa156105fd575f9261059560a48594855193604051948592602084019763ab750e7560e01b8952606060248601525180938160848701528686015e8885848601015260448401526064830152601f801991011681010301601f198101835282610635565b51907f00000000000000000000000010aeafac83d48e2f9ac4baaf94311c45face14045afa3d156105f8573d6105ca8161066b565b906105d86040519283610635565b81525f60203d92013e5b156105e957005b631113230b60e21b5f5260045ffd5b6105e2565b6040513d5f823e3d90fd5b6318e48a7560e21b5f5260045ffd5b633a4848d760e11b5f5260045ffd5b630323378b60e61b5f5260045ffd5b90601f8019910116810190811067ffffffffffffffff82111761065757604052565b634e487b7160e01b5f52604160045260245ffd5b67ffffffffffffffff811161065757601f01601f191660200190565b5f546001600160a01b0316330361069a57565b606460405162461bcd60e51b815260206004820152602060248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152fdfea2646970667358221220f13d21fc4ef9021fabad04550d02c85e053cdf7f2d3d76f759a4e7a01aa53f9c64736f6c634300081e0033

External libraries