false
false
0
The new Blockscout UI is now open source! Learn how to deploy it here

Contract Address Details

0x25A669bc4E405b78437B560f908bc78F8141d159

Contract Name
P256Verifier
Creator
0x4779d1–4df7b8 at 0x9f298b–c37c8b
Balance
0 ETH
Tokens
Fetching tokens...
Transactions
Fetching transactions...
Transfers
Fetching transfers...
Gas Used
Fetching gas used...
Last Balance Update
9108
Warning! Contract bytecode has been changed and doesn't match the verified one. Therefore, interaction with this smart contract may be risky.
Contract name:
P256Verifier




Optimization enabled
true
Compiler version
v0.8.30+commit.73712a01




Optimization runs
200
EVM Version
prague




Verified at
2025-12-15T12:39:57.768179Z

node_modules/p256-verifier/src/P256Verifier.sol

// SPDX-License-Identifier: MIT
// Force a specific Solidity version for reproducibility.
pragma solidity ^0.8.20;

/**
 * This contract verifies P256 (secp256r1) signatures. It matches the exact
 * interface specified in the EIP-7212 precompile, allowing it to be used as a
 * fallback. It's based on Ledger's optimized implementation:
 * https://github.com/rdubois-crypto/FreshCryptoLib/tree/master/solidity
 **/
contract P256Verifier {

    struct CompDoubleZZ {
        uint256 comp_U;
        uint256 comp_V;
        uint256 comp_W;
        uint256 comp_S;
        uint256 comp_M;
    }

    struct CompDaddAffine {
        uint256 comp_P;
        uint256 comp_PP;
        uint256 comp_PPP;
        uint256 comp_Q;
        uint256 comp_R;
    }

    /**
     * Precompiles don't use a function signature. The first byte of callldata
     * is the first byte of an input argument. In this case:
     *
     * input[  0: 32] = signed data hash
     * input[ 32: 64] = signature r
     * input[ 64: 96] = signature s
     * input[ 96:128] = public key x
     * input[128:160] = public key y
     *
     * result[ 0: 32] = 0x00..00 (invalid) or 0x00..01 (valid)
     *
     * For details, see https://eips.ethereum.org/EIPS/eip-7212
     */
    fallback(bytes calldata input) external returns (bytes memory) {
        if (input.length != 160) {
            return abi.encodePacked(uint256(0));
        }

        bytes32 hash = bytes32(input[0:32]);
        uint256 r = uint256(bytes32(input[32:64]));
        uint256 s = uint256(bytes32(input[64:96]));
        uint256 x = uint256(bytes32(input[96:128]));
        uint256 y = uint256(bytes32(input[128:160]));

        uint256 ret = ecdsa_verify(hash, r, s, [x, y]) ? 1 : 0;

        return abi.encodePacked(ret);
    }

    // Parameters for the sec256r1 (P256) elliptic curve
    // Curve prime field modulus
    uint256 constant p =
        0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF;
    // Short weierstrass first coefficient
    uint256 constant a = // The assumption a == -3 (mod p) is used throughout the codebase
        0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC;
    // Short weierstrass second coefficient
    uint256 constant b =
        0x5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B;
    // Generating point affine coordinates
    uint256 constant GX =
        0x6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296;
    uint256 constant GY =
        0x4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5;
    // Curve order (number of points)
    uint256 constant n =
        0xFFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551;
    // -2 mod p constant, used to speed up inversion and doubling (avoid negation)
    uint256 constant minus_2modp =
        0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFD;
    // -2 mod n constant, used to speed up inversion
    uint256 constant minus_2modn =
        0xFFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC63254F;

    /**
     * @dev ECDSA verification given signature and public key.
     */
    function ecdsa_verify(
        bytes32 message_hash,
        uint256 r,
        uint256 s,
        uint256[2] memory pubKey
    ) private view returns (bool) {
        // Check r and s are in the scalar field
        if (r == 0 || r >= n || s == 0 || s >= n) {
            return false;
        }

        if (!ecAff_isValidPubkey(pubKey[0], pubKey[1])) {
            return false;
        }

        uint256 sInv = nModInv(s);

        uint256 scalar_u = mulmod(uint256(message_hash), sInv, n); // (h * s^-1) in scalar field
        uint256 scalar_v = mulmod(r, sInv, n); // (r * s^-1) in scalar field

        uint256 r_x = ecZZ_mulmuladd(
            pubKey[0],
            pubKey[1],
            scalar_u,
            scalar_v
        );
        return r_x % n == r;
    }

    /**
     * @dev Check if a point in affine coordinates is on the curve
     * Reject 0 point at infinity.
     */
    function ecAff_isValidPubkey(
        uint256 x,
        uint256 y
    ) internal pure returns (bool) {
        if (x >= p || y >= p || (x == 0 && y == 0)) {
            return false;
        }

        return ecAff_satisfiesCurveEqn(x, y);
    }

    function ecAff_satisfiesCurveEqn(
        uint256 x,
        uint256 y
    ) internal pure returns (bool) {
        uint256 LHS = mulmod(y, y, p); // y^2
        uint256 RHS = addmod(mulmod(mulmod(x, x, p), x, p), mulmod(a, x, p), p); // x^3 + a x
        RHS = addmod(RHS, b, p); // x^3 + a*x + b

        return LHS == RHS;
    }

    /**
     * @dev Computation of uG + vQ using Strauss-Shamir's trick, G basepoint, Q public key
     * returns tuple of (x coordinate of uG + vQ, boolean that is false if internal precompile staticcall fail)
     * Strauss-Shamir is described well in https://stackoverflow.com/a/50994362
     */
    function ecZZ_mulmuladd(
        uint256 QX,
        uint256 QY, // affine rep for input point Q
        uint256 scalar_u,
        uint256 scalar_v
    ) internal view returns (uint256 X) {
        uint256 zz = 1;
        uint256 zzz = 1;
        uint256 Y;
        uint256 HX;
        uint256 HY;

        if (scalar_u == 0 && scalar_v == 0) return 0;

        // H = g + Q
        (HX, HY) = ecAff_add(GX, GY, QX, QY);

        int256 index = 255;
        uint256 bitpair;

        // Find the first bit index that's active in either scalar_u or scalar_v.
        while(index >= 0) {
            bitpair = compute_bitpair(uint256(index), scalar_u, scalar_v);
            index--;
            if (bitpair != 0) break;
        }

        // initialise (X, Y) depending on the first active bitpair.
        // invariant(bitpair != 0); // bitpair == 0 is only possible if u and v are 0.
        
        if (bitpair == 1) {
            (X, Y) = (GX, GY);
        } else if (bitpair == 2) {
            (X, Y) = (QX, QY);
        } else if (bitpair == 3) {
            (X, Y) = (HX, HY);
        }

        uint256 TX;
        uint256 TY;
        while(index >= 0) {
            (X, Y, zz, zzz) = ecZZ_double_zz(X, Y, zz, zzz);

            bitpair = compute_bitpair(uint256(index), scalar_u, scalar_v);
            index--;

            if (bitpair == 0) {
                continue;
            } else if (bitpair == 1) {
                (TX, TY) = (GX, GY);
            } else if (bitpair == 2) {
                (TX, TY) = (QX, QY);
            } else {
                (TX, TY) = (HX, HY);
            }

            (X, Y, zz, zzz) = ecZZ_dadd_affine(X, Y, zz, zzz, TX, TY);
        }

        uint256 zzInv = pModInv(zz); // If zz = 0, zzInv = 0.
        X = mulmod(X, zzInv, p); // X/zz
    }

    /**
     * @dev Compute the bits at `index` of u and v and return
     * them as 2 bit concatenation. The bit at index 0 is on 
     * if the `index`th bit of scalar_u is on and the bit at
     * index 1 is on if the `index`th bit of scalar_v is on.
     * Examples:
     * - compute_bitpair(0, 1, 1) == 3
     * - compute_bitpair(0, 1, 0) == 1
     * - compute_bitpair(0, 0, 1) == 2
     */
    function compute_bitpair(uint256 index, uint256 scalar_u, uint256 scalar_v) internal pure returns (uint256 ret) {
        ret = (((scalar_v >> index) & 1) << 1) + ((scalar_u >> index) & 1);
    }

    /**
     * @dev Add two elliptic curve points in affine coordinates
     * Assumes points are on the EC
     */
    function ecAff_add(
        uint256 x1,
        uint256 y1,
        uint256 x2,
        uint256 y2
    ) internal view returns (uint256, uint256) {
        // invariant(ecAff_IsZero(x1, y1) || ecAff_isOnCurve(x1, y1));
        // invariant(ecAff_IsZero(x2, y2) || ecAff_isOnCurve(x2, y2));

        uint256 zz1;
        uint256 zzz1;

        if (ecAff_IsInf(x1, y1)) return (x2, y2);
        if (ecAff_IsInf(x2, y2)) return (x1, y1);

        (x1, y1, zz1, zzz1) = ecZZ_dadd_affine(x1, y1, 1, 1, x2, y2);

        return ecZZ_SetAff(x1, y1, zz1, zzz1);
    }

    /**
     * @dev Check if a point is the infinity point in affine rep.
     * Assumes point is on the EC or is the point at infinity.
     */
    function ecAff_IsInf(
        uint256 x,
        uint256 y
    ) internal pure returns (bool flag) {
        // invariant((x == 0 && y == 0) || ecAff_isOnCurve(x, y));

        return (x == 0 && y == 0);
    }

    /**
     * @dev Check if a point is the infinity point in ZZ rep.
     * Assumes point is on the EC or is the point at infinity.
     */
    function ecZZ_IsInf(
        uint256 zz,
        uint256 zzz
    ) internal pure returns (bool flag) {
        // invariant((zz == 0 && zzz == 0) || ecAff_isOnCurve(x, y) for affine 
        // form of the point)

        return (zz == 0 && zzz == 0);
    }

    /**
     * @dev Add a ZZ point to an affine point and return as ZZ rep
     * Uses madd-2008-s and mdbl-2008-s internally
     * https://hyperelliptic.org/EFD/g1p/auto-shortw-xyzz-3.html#addition-madd-2008-s
     * Matches https://github.com/supranational/blst/blob/9c87d4a09d6648e933c818118a4418349804ce7f/src/ec_ops.h#L705 closely
     * Handles points at infinity gracefully
     */
    function ecZZ_dadd_affine(
        uint256 x1,
        uint256 y1,
        uint256 zz1,
        uint256 zzz1,
        uint256 x2,
        uint256 y2
    ) internal pure returns (uint256 x3, uint256 y3, uint256 zz3, uint256 zzz3) {
        if (ecAff_IsInf(x2, y2)) { // (X2, Y2) is point at infinity
            if (ecZZ_IsInf(zz1, zzz1)) return ecZZ_PointAtInf();
            return (x1, y1, zz1, zzz1);
        } else if (ecZZ_IsInf(zz1, zzz1)) { // (X1, Y1) is point at infinity
            return (x2, y2, 1, 1);
        }

        CompDaddAffine memory comp;
        comp.comp_R = addmod(mulmod(y2, zzz1, p), p - y1, p); // R = S2 - y1 = y2*zzz1 - y1
        comp.comp_P = addmod(mulmod(x2, zz1, p), p - x1, p); // P = U2 - x1 = x2*zz1 - x1

        if (comp.comp_P != 0) { // X1 != X2
            // invariant(x1 != x2);
            comp.comp_PP = mulmod(comp.comp_P, comp.comp_P, p); // PP = P^2
            comp.comp_PPP = mulmod(comp.comp_PP, comp.comp_P, p); // PPP = P*PP
            zz3 = mulmod(zz1, comp.comp_PP, p); //// ZZ3 = ZZ1*PP
            zzz3 = mulmod(zzz1, comp.comp_PPP, p); //// ZZZ3 = ZZZ1*PPP
            comp.comp_Q = mulmod(x1, comp.comp_PP, p); // Q = X1*PP
            x3 = addmod(
                addmod(mulmod(comp.comp_R, comp.comp_R, p), p - comp.comp_PPP, p), // (R^2) + (-PPP)
                mulmod(minus_2modp, comp.comp_Q, p), // (-2)*(Q)
                p
            ); // R^2 - PPP - 2*Q
            y3 = addmod(
                mulmod(addmod(comp.comp_Q, p - x3, p), comp.comp_R, p), //(Q+(-x3))*R
                mulmod(p - y1, comp.comp_PPP, p), // (-y1)*PPP
                p
            ); // R*(Q-x3) - y1*PPP
        } else if (comp.comp_R == 0) { // X1 == X2 and Y1 == Y2
            // invariant(x1 == x2 && y1 == y2);

            // Must be affine because (X2, Y2) is affine.
            (x3, y3, zz3, zzz3) = ecZZ_double_affine(x2, y2);
        } else { // X1 == X2 and Y1 == -Y2
            // invariant(x1 == x2 && y1 == p - y2);
            (x3, y3, zz3, zzz3) = ecZZ_PointAtInf();
        }

        return (x3, y3, zz3, zzz3);
    }

    /**
     * @dev Double a ZZ point 
     * Uses http://hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#doubling-dbl-2008-s-1
     * Handles point at infinity gracefully
     */
    function ecZZ_double_zz(uint256 x1,
        uint256 y1, uint256 zz1, uint256 zzz1) internal pure returns (uint256, uint256, uint256, uint256) {
        if (ecZZ_IsInf(zz1, zzz1)) return ecZZ_PointAtInf();
    
        CompDoubleZZ memory comp;
        comp.comp_U = mulmod(2, y1, p); // U = 2*Y1
        comp.comp_V = mulmod(comp.comp_U, comp.comp_U, p); // V = U^2
        comp.comp_W = mulmod(comp.comp_U, comp.comp_V, p); // W = U*V
        comp.comp_S = mulmod(x1, comp.comp_V, p); // S = X1*V
        comp.comp_M = addmod(mulmod(3, mulmod(x1, x1, p), p), mulmod(a, mulmod(zz1, zz1, p), p), p); //M = 3*(X1)^2 + a*(zz1)^2
        
        uint256 x3 = addmod(mulmod(comp.comp_M, comp.comp_M, p), mulmod(minus_2modp, comp.comp_S, p), p); // M^2 + (-2)*S
        return( 
            x3, // M^2 + (-2)*S
            addmod(mulmod(comp.comp_M, addmod(comp.comp_S, p - x3, p), p), mulmod(p - comp.comp_W, y1, p), p), // M*(S+(-X3)) + (-W)*Y1
            mulmod(comp.comp_V, zz1, p), // V*ZZ1
            mulmod(comp.comp_W, zzz1, p) // W*ZZZ1
        );
    }

    /**
     * @dev Double an affine point and return as a ZZ point 
     * Uses http://hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#doubling-mdbl-2008-s-1
     * Handles point at infinity gracefully
     */
    function ecZZ_double_affine(uint256 x1,
        uint256 y1) internal pure returns (uint256 x3, uint256 y3, uint256 zz3, uint256 zzz3) {
        if (ecAff_IsInf(x1, y1)) return ecZZ_PointAtInf();

        uint256 comp_U = mulmod(2, y1, p); // U = 2*Y1
        zz3 = mulmod(comp_U, comp_U, p); // V = U^2 = zz3
        zzz3 = mulmod(comp_U, zz3, p); // W = U*V = zzz3
        uint256 comp_S = mulmod(x1, zz3, p); // S = X1*V
        uint256 comp_M = addmod(mulmod(3, mulmod(x1, x1, p), p), a, p); // M = 3*(X1)^2 + a
        
        x3 = addmod(mulmod(comp_M, comp_M, p), mulmod(minus_2modp, comp_S, p), p); // M^2 + (-2)*S
        y3 = addmod(mulmod(comp_M, addmod(comp_S, p - x3, p), p), mulmod(p - zzz3, y1, p), p); // M*(S+(-X3)) + (-W)*Y1
    }

    /**
     * @dev Convert from ZZ rep to affine rep
     * Assumes (zz)^(3/2) == zzz (i.e. zz == z^2 and zzz == z^3)
     * See https://hyperelliptic.org/EFD/g1p/auto-shortw-xyzz-3.html
     */
    function ecZZ_SetAff(
        uint256 x,
        uint256 y,
        uint256 zz,
        uint256 zzz
    ) internal view returns (uint256 x1, uint256 y1) {
        if(ecZZ_IsInf(zz, zzz)) {
            (x1, y1) = ecAffine_PointAtInf();
            return (x1, y1);
        }

        uint256 zzzInv = pModInv(zzz); // 1 / zzz
        uint256 zInv = mulmod(zz, zzzInv, p); // 1 / z
        uint256 zzInv = mulmod(zInv, zInv, p); // 1 / zz

        // invariant(mulmod(FCL_pModInv(zInv), FCL_pModInv(zInv), p) == zz)
        // invariant(mulmod(mulmod(FCL_pModInv(zInv), FCL_pModInv(zInv), p), FCL_pModInv(zInv), p) == zzz)

        x1 = mulmod(x, zzInv, p); // X / zz
        y1 = mulmod(y, zzzInv, p); // y = Y / zzz
    }

    /**
     * @dev Point at infinity in ZZ rep
     */
    function ecZZ_PointAtInf() internal pure returns (uint256, uint256, uint256, uint256) {
        return (0, 0, 0, 0);
    }

    /**
     * @dev Point at infinity in affine rep
     */
    function ecAffine_PointAtInf() internal pure returns (uint256, uint256) {
        return (0, 0);
    }

    /**
     * @dev u^-1 mod n
     */
    function nModInv(uint256 u) internal view returns (uint256) {
        return modInv(u, n, minus_2modn);
    }

    /**
     * @dev u^-1 mod p
     */
    function pModInv(uint256 u) internal view returns (uint256) {
        return modInv(u, p, minus_2modp);
    }

    /**
     * @dev u^-1 mod f = u^(phi(f) - 1) mod f = u^(f-2) mod f for prime f
     * by Fermat's little theorem, compute u^(f-2) mod f using modexp precompile
     * Assume f != 0. If u is 0, then u^-1 mod f is undefined mathematically, 
     * but this function returns 0.
     */
    function modInv(uint256 u, uint256 f, uint256 minus_2modf) internal view returns (uint256 result) {
        // invariant(f != 0);
        // invariant(f prime);

        // This seems like a relatively standard way to use this precompile:
        // https://github.com/OpenZeppelin/openzeppelin-contracts/pull/3298/files#diff-489d4519a087ca2c75be3315b673587abeca3b302f807643e97efa7de8cb35a5R427

        (bool success, bytes memory ret) = (address(0x05).staticcall(abi.encode(32, 32, 32, u, minus_2modf, f)));
        assert(success); // precompile should never fail on regular EVM environments
        result = abi.decode(ret, (uint256));
    }
}
        

Compiler Settings

{"viaIR":true,"remappings":["openzeppelin/=node_modules/@openzeppelin/","@openzeppelin/=node_modules/@openzeppelin/","@openzeppelin-upgrades/contracts/=node_modules/@openzeppelin/contracts-upgradeable/","@risc0/contracts/=node_modules/risc0-ethereum/contracts/src/","@solady/=node_modules/solady/","solady/src/=node_modules/solady/src/","solady/utils/=node_modules/solady/src/utils/","@optimism/=node_modules/optimism/","@sp1-contracts/=node_modules/sp1-contracts/contracts/","forge-std/=node_modules/forge-std/","@p256-verifier/contracts/=node_modules/p256-verifier/src/","@eth-fabric/urc/=node_modules/urc/src/","ds-test/=node_modules/ds-test/","src/=contracts/","test/=test/","script/=script/","optimism/=node_modules/optimism/","p256-verifier/=node_modules/p256-verifier/","risc0-ethereum/=node_modules/risc0-ethereum/","sp1-contracts/=node_modules/sp1-contracts/","urc/=node_modules/urc/"],"outputSelection":{"*":{"*":["*"],"":["*"]}},"optimizer":{"runs":200,"enabled":true},"metadata":{"useLiteralContent":false,"bytecodeHash":"ipfs","appendCBOR":true},"libraries":{"contracts/layer1/core/libs/LibInboxSetup.sol":{"LibInboxSetup":"0xf88Ef5437749A225621101BE8C1BE1A0cE967758"},"contracts/layer1/core/libs/LibForcedInclusion.sol":{"LibForcedInclusion":"0xd1a27F331c17eD8Cbb6DAbce67A42d6b8a6B0e14"}},"evmVersion":"prague"}
              

Contract ABI

[{"type":"fallback","stateMutability":"nonpayable"}]
              

Contract Creation Code

Verify & Publish
0x60808060405234601557610f29908161001a8239f35b5f80fdfe60c06040523461001a5761001236610054565b602081519101f35b5f80fd5b90601f8019910116810190811067ffffffffffffffff82111761004057604052565b634e487b7160e01b5f52604160045260245ffd5b60a081036100ef578060201161001a575f358160401161001a576020358260601161001a57604035908360801161001a576060359360a01161001a576080359260405193604085019585871067ffffffffffffffff881117610040576100c39660405285526020850152610108565b156100e95760015b60ff60405191166020820152602081526100e660408261001e565b90565b5f6100cb565b506040515f6020820152602081526100e660408261001e565b9291909283158015610275575b801561026d575b8015610256575b61024e5782519161013a602085019384519061028c565b15610245575f8091604051602081019160208352602060408301526020606083015260808201527fffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc63254f60a08201525f516020610eb45f395f51905f5260c082015260c081526101a960e08261001e565b519060055afa913d1561023d573d9267ffffffffffffffff841161004057604051936101df601f8201601f19166020018661001e565b84523d5f602086013e5b156102295760208380518101031261001a575f516020610eb45f395f51905f529384602061022495015191519181818909940991519061037c565b061490565b634e487b7160e01b5f52600160045260245ffd5b6060926101e9565b50505050505f90565b505050505f90565b505f516020610eb45f395f51905f52821015610123565b50811561011c565b505f516020610eb45f395f51905f52841015610115565b600160601b63ffffffff60c01b0319811080159061033f575b801561032e575b61032857600160601b63ffffffff60c01b0319907f5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b90829081816003600160601b0363ffffffff60c01b03190990600160601b63ffffffff60c01b0319908181800909080890600160601b63ffffffff60c01b03199080091490565b50505f90565b50801580156102ac575081156102ac565b50600160601b63ffffffff60c01b03198210156102a5565b600160ff1b8114610368575f190190565b634e487b7160e01b5f52601160045260245ffd5b90926080525f9060019384935f9281158061052a575b61051f576103a083826105f0565b95909460ff60a0525f5b5f60a05112156104f6575b808a036104c5575050505f516020610ed45f395f51905f52955f516020610e945f395f51905f52969593919492955b5f60a0511215610412575050505050505061040d600163ffffffff60601b0360601b1992610534565b900990565b6104239395979891929496986106b2565b80989398979291979188998192819a6104416080518960a05161065c565b61044c60a051610357565b60a052806104655750505050505b9593919492956103e4565b92955092959a5092506104a2959a50600181145f146104ac57505f516020610ed45f395f51905f52935f516020610e945f395f51905f5293610abe565b909792969161045a565b6002036104bc5785938993610abe565b87938793610abe565b600281036104df57505050829581969593919492956103e4565b9197916002190161045a575095508495849661045a565b506105066080518560a05161065c565b61051160a051610357565b60a05280156103aa576103b5565b505050505050505f90565b5060805115610392565b5f8091604051602081019160208352602060408301526020606083015260808201526002600160601b0363ffffffff60c01b031960a0820152600163ffffffff60601b0360601b1960c082015260c0815261059060e08261001e565b519060055afa3d156105e8573d9067ffffffffffffffff821161004057604051916105c5601f8201601f19166020018461001e565b82523d5f602084013e5b156102295760208180518101031261001a576020015190565b6060906105cf565b801580610654575b6106325761062e91610625915f516020610ed45f395f51905f525f516020610e945f395f51905f52610861565b92919091610cf1565b9091565b50505f516020610e945f395f51905f52905f516020610ed45f395f51905f5290565b5081156105f8565b91906002600192841c831b16921c1681018091116103685790565b6040519060a0820182811067ffffffffffffffff821117610040576040525f6080838281528260208201528260408201528260608201520152565b919390841580610859575b61084b576106c9610677565b92600160601b63ffffffff60c01b031982600209808552600160601b63ffffffff60c01b03199080096020850181815285519091600160601b63ffffffff60c01b0319910991604086019283526080600163ffffffff60601b0360601b19835183096060880190815291600160601b63ffffffff60c01b03199081808c80096003600160601b0363ffffffff60c01b03190990600160601b63ffffffff60c01b0319908190800960030908960186815281519096600160601b63ffffffff60c01b03199182906002600160601b0363ffffffff60c01b03190990600160601b63ffffffff60c01b0319908009089551905192600160601b63ffffffff60c01b031987810393908411610368578151600160601b63ffffffff60c01b03199081039a908b11610368579051600160601b63ffffffff60c01b031991900990519097600160601b63ffffffff60c01b031991099597600160601b63ffffffff60c01b03199485910992600160601b63ffffffff60c01b031992839108900908929190565b505f93508392508291508190565b5083156106bd565b91939290935f91811580610ab6575b1561089057505080610886575091906001908190565b9250508180918190565b909391505f61089d610677565b95600160601b63ffffffff60c01b031990810392908311610aa2576080870195600160601b63ffffffff60c01b0319848160018509088752600160601b63ffffffff60c01b0319868103908111610a8e57600160601b63ffffffff60c01b03199081600184090880895215610a5f5750508551600160601b63ffffffff60c01b0319908009602087018181528751909691600160601b63ffffffff60c01b031991900990604088019182526060600163ffffffff60601b03811b19885160010997600163ffffffff60601b03821b19845160010997600163ffffffff60601b03831b1991519009980197885280518251600160601b63ffffffff60c01b0319908103908111610a4b578951600160601b63ffffffff60c01b0319929083906002600160601b0363ffffffff60c01b03190991600160601b63ffffffff60c01b0319918290800908089751600160601b63ffffffff60c01b031989810391908211610a4b579151600160601b63ffffffff60c01b03199290918391080990519092600160601b63ffffffff60c01b0319919009600160601b63ffffffff60c01b03199290915008935b93929190565b634e487b7160e01b85526011600452602485fd5b939592509350945051155f14610a8357610a7a929350610d5d565b91939092610a45565b505081829183610a45565b634e487b7160e01b84526011600452602484fd5b634e487b7160e01b82526011600452602482fd5b508015610870565b91949592939095811580610ce9575b15610aee575050831580610ae6575b61084b5793929190565b508215610adc565b85919294951580610ce1575b610cd157610b06610677565b96600160601b63ffffffff60c01b031990810393908411610368576080880191600160601b63ffffffff60c01b031985818a8409088352600160601b63ffffffff60c01b031987810390811161036857600160601b63ffffffff60c01b0319908186850908808a5215610caa5750508651606090600160601b63ffffffff60c01b03199080096020890190808252600163ffffffff60601b03831b19908a5190099360408a01948552600163ffffffff60601b03831b19908251900997600163ffffffff60601b03831b19908551900996600163ffffffff60601b03831b1991519009970196875280518251600160601b63ffffffff60c01b0319908103908111610368578851600160601b63ffffffff60c01b0319929083906002600160601b0363ffffffff60c01b03190991600160601b63ffffffff60c01b0319918290800908089651600160601b63ffffffff60c01b031988810391908211610368579151600160601b63ffffffff60c01b03199290918391080990519091600160601b63ffffffff60c01b0319919009600160601b63ffffffff60c01b03199108929190565b95509550929550505051155f14610cc457610a7a91610d5d565b50505f5f905f925f610a45565b9550509150915091906001908190565b508515610afa565b508015610acd565b90919392841580610d55575b610d4a57610d0a90610534565b93600160601b63ffffffff60c01b031990859009600160601b63ffffffff60c01b0319919082908009900992600160601b63ffffffff60c01b0319910990565b50505090505f905f90565b508015610cfd565b9190821580610e8b575b610e7f57600160601b63ffffffff60c01b03198160020990600160601b63ffffffff60c01b031982800991600160601b63ffffffff60c01b03199083900990600160601b63ffffffff60c01b031983860994600160601b63ffffffff60c01b0319906003600160601b0363ffffffff60c01b0319908290819080096003090894600160601b63ffffffff60c01b031980826002600160601b0363ffffffff60c01b031909600160601b63ffffffff60c01b03198880090895600160601b63ffffffff60c01b03198781039190821161036857600160601b63ffffffff60c01b031985810390811161036857600160601b63ffffffff60c01b03199485910992600160601b63ffffffff60c01b03199283910890090892565b505f9150819081908190565b508015610d6756fe6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc6325514fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5a2646970667358221220a4f58cb3360e9427cfd6bd7d7ba7e37f1447c47e1b06f2ca6d1d420678eb6a2064736f6c634300081e0033

Deployed ByteCode

0x60c06040523461001a5761001236610054565b602081519101f35b5f80fd5b90601f8019910116810190811067ffffffffffffffff82111761004057604052565b634e487b7160e01b5f52604160045260245ffd5b60a081036100ef578060201161001a575f358160401161001a576020358260601161001a57604035908360801161001a576060359360a01161001a576080359260405193604085019585871067ffffffffffffffff881117610040576100c39660405285526020850152610108565b156100e95760015b60ff60405191166020820152602081526100e660408261001e565b90565b5f6100cb565b506040515f6020820152602081526100e660408261001e565b9291909283158015610275575b801561026d575b8015610256575b61024e5782519161013a602085019384519061028c565b15610245575f8091604051602081019160208352602060408301526020606083015260808201527fffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc63254f60a08201525f516020610eb45f395f51905f5260c082015260c081526101a960e08261001e565b519060055afa913d1561023d573d9267ffffffffffffffff841161004057604051936101df601f8201601f19166020018661001e565b84523d5f602086013e5b156102295760208380518101031261001a575f516020610eb45f395f51905f529384602061022495015191519181818909940991519061037c565b061490565b634e487b7160e01b5f52600160045260245ffd5b6060926101e9565b50505050505f90565b505050505f90565b505f516020610eb45f395f51905f52821015610123565b50811561011c565b505f516020610eb45f395f51905f52841015610115565b600160601b63ffffffff60c01b0319811080159061033f575b801561032e575b61032857600160601b63ffffffff60c01b0319907f5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b90829081816003600160601b0363ffffffff60c01b03190990600160601b63ffffffff60c01b0319908181800909080890600160601b63ffffffff60c01b03199080091490565b50505f90565b50801580156102ac575081156102ac565b50600160601b63ffffffff60c01b03198210156102a5565b600160ff1b8114610368575f190190565b634e487b7160e01b5f52601160045260245ffd5b90926080525f9060019384935f9281158061052a575b61051f576103a083826105f0565b95909460ff60a0525f5b5f60a05112156104f6575b808a036104c5575050505f516020610ed45f395f51905f52955f516020610e945f395f51905f52969593919492955b5f60a0511215610412575050505050505061040d600163ffffffff60601b0360601b1992610534565b900990565b6104239395979891929496986106b2565b80989398979291979188998192819a6104416080518960a05161065c565b61044c60a051610357565b60a052806104655750505050505b9593919492956103e4565b92955092959a5092506104a2959a50600181145f146104ac57505f516020610ed45f395f51905f52935f516020610e945f395f51905f5293610abe565b909792969161045a565b6002036104bc5785938993610abe565b87938793610abe565b600281036104df57505050829581969593919492956103e4565b9197916002190161045a575095508495849661045a565b506105066080518560a05161065c565b61051160a051610357565b60a05280156103aa576103b5565b505050505050505f90565b5060805115610392565b5f8091604051602081019160208352602060408301526020606083015260808201526002600160601b0363ffffffff60c01b031960a0820152600163ffffffff60601b0360601b1960c082015260c0815261059060e08261001e565b519060055afa3d156105e8573d9067ffffffffffffffff821161004057604051916105c5601f8201601f19166020018461001e565b82523d5f602084013e5b156102295760208180518101031261001a576020015190565b6060906105cf565b801580610654575b6106325761062e91610625915f516020610ed45f395f51905f525f516020610e945f395f51905f52610861565b92919091610cf1565b9091565b50505f516020610e945f395f51905f52905f516020610ed45f395f51905f5290565b5081156105f8565b91906002600192841c831b16921c1681018091116103685790565b6040519060a0820182811067ffffffffffffffff821117610040576040525f6080838281528260208201528260408201528260608201520152565b919390841580610859575b61084b576106c9610677565b92600160601b63ffffffff60c01b031982600209808552600160601b63ffffffff60c01b03199080096020850181815285519091600160601b63ffffffff60c01b0319910991604086019283526080600163ffffffff60601b0360601b19835183096060880190815291600160601b63ffffffff60c01b03199081808c80096003600160601b0363ffffffff60c01b03190990600160601b63ffffffff60c01b0319908190800960030908960186815281519096600160601b63ffffffff60c01b03199182906002600160601b0363ffffffff60c01b03190990600160601b63ffffffff60c01b0319908009089551905192600160601b63ffffffff60c01b031987810393908411610368578151600160601b63ffffffff60c01b03199081039a908b11610368579051600160601b63ffffffff60c01b031991900990519097600160601b63ffffffff60c01b031991099597600160601b63ffffffff60c01b03199485910992600160601b63ffffffff60c01b031992839108900908929190565b505f93508392508291508190565b5083156106bd565b91939290935f91811580610ab6575b1561089057505080610886575091906001908190565b9250508180918190565b909391505f61089d610677565b95600160601b63ffffffff60c01b031990810392908311610aa2576080870195600160601b63ffffffff60c01b0319848160018509088752600160601b63ffffffff60c01b0319868103908111610a8e57600160601b63ffffffff60c01b03199081600184090880895215610a5f5750508551600160601b63ffffffff60c01b0319908009602087018181528751909691600160601b63ffffffff60c01b031991900990604088019182526060600163ffffffff60601b03811b19885160010997600163ffffffff60601b03821b19845160010997600163ffffffff60601b03831b1991519009980197885280518251600160601b63ffffffff60c01b0319908103908111610a4b578951600160601b63ffffffff60c01b0319929083906002600160601b0363ffffffff60c01b03190991600160601b63ffffffff60c01b0319918290800908089751600160601b63ffffffff60c01b031989810391908211610a4b579151600160601b63ffffffff60c01b03199290918391080990519092600160601b63ffffffff60c01b0319919009600160601b63ffffffff60c01b03199290915008935b93929190565b634e487b7160e01b85526011600452602485fd5b939592509350945051155f14610a8357610a7a929350610d5d565b91939092610a45565b505081829183610a45565b634e487b7160e01b84526011600452602484fd5b634e487b7160e01b82526011600452602482fd5b508015610870565b91949592939095811580610ce9575b15610aee575050831580610ae6575b61084b5793929190565b508215610adc565b85919294951580610ce1575b610cd157610b06610677565b96600160601b63ffffffff60c01b031990810393908411610368576080880191600160601b63ffffffff60c01b031985818a8409088352600160601b63ffffffff60c01b031987810390811161036857600160601b63ffffffff60c01b0319908186850908808a5215610caa5750508651606090600160601b63ffffffff60c01b03199080096020890190808252600163ffffffff60601b03831b19908a5190099360408a01948552600163ffffffff60601b03831b19908251900997600163ffffffff60601b03831b19908551900996600163ffffffff60601b03831b1991519009970196875280518251600160601b63ffffffff60c01b0319908103908111610368578851600160601b63ffffffff60c01b0319929083906002600160601b0363ffffffff60c01b03190991600160601b63ffffffff60c01b0319918290800908089651600160601b63ffffffff60c01b031988810391908211610368579151600160601b63ffffffff60c01b03199290918391080990519091600160601b63ffffffff60c01b0319919009600160601b63ffffffff60c01b03199108929190565b95509550929550505051155f14610cc457610a7a91610d5d565b50505f5f905f925f610a45565b9550509150915091906001908190565b508515610afa565b508015610acd565b90919392841580610d55575b610d4a57610d0a90610534565b93600160601b63ffffffff60c01b031990859009600160601b63ffffffff60c01b0319919082908009900992600160601b63ffffffff60c01b0319910990565b50505090505f905f90565b508015610cfd565b9190821580610e8b575b610e7f57600160601b63ffffffff60c01b03198160020990600160601b63ffffffff60c01b031982800991600160601b63ffffffff60c01b03199083900990600160601b63ffffffff60c01b031983860994600160601b63ffffffff60c01b0319906003600160601b0363ffffffff60c01b0319908290819080096003090894600160601b63ffffffff60c01b031980826002600160601b0363ffffffff60c01b031909600160601b63ffffffff60c01b03198880090895600160601b63ffffffff60c01b03198781039190821161036857600160601b63ffffffff60c01b031985810390811161036857600160601b63ffffffff60c01b03199485910992600160601b63ffffffff60c01b03199283910890090892565b505f9150819081908190565b508015610d6756fe6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc6325514fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5a2646970667358221220a4f58cb3360e9427cfd6bd7d7ba7e37f1447c47e1b06f2ca6d1d420678eb6a2064736f6c634300081e0033

External libraries