false
false
0
The new Blockscout UI is now open source! Learn how to deploy it here

Contract Address Details

0x4e3971Be57848403B5E3986125cd32c68d431086

Contract Name
SgxVerifier
Creator
0x4779d1–4df7b8 at 0x840913–c600ba
Balance
0 ETH
Tokens
Fetching tokens...
Transactions
0 Transactions
Transfers
0 Transfers
Gas Used
Fetching gas used...
Last Balance Update
3610
Warning! Contract bytecode has been changed and doesn't match the verified one. Therefore, interaction with this smart contract may be risky.
Contract name:
SgxVerifier




Optimization enabled
true
Compiler version
v0.8.30+commit.73712a01




Optimization runs
200
EVM Version
prague




Verified at
2025-12-15T12:46:46.411982Z

Constructor Arguments

0x0000000000000000000000000000000000000000000000000000000000028c590000000000000000000000004779d18931b35540f84b0cd0e9633855b84df7b800000000000000000000000018a235e18bee9cda516f227aa97ae6627e7d612c

Arg [0] (uint64) : 167001
Arg [1] (address) : 0x4779d18931b35540f84b0cd0e9633855b84df7b8
Arg [2] (address) : 0x18a235e18bee9cda516f227aa97ae6627e7d612c

              

contracts/layer1/verifiers/SgxVerifier.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;

import { IProofVerifier } from "./IProofVerifier.sol";
import { LibPublicInput } from "./LibPublicInput.sol";
import { Ownable2Step } from "@openzeppelin/contracts/access/Ownable2Step.sol";
import { ECDSA } from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import { IAttestation } from "src/layer1/automata-attestation/interfaces/IAttestation.sol";
import { V3Struct } from "src/layer1/automata-attestation/lib/QuoteV3Auth/V3Struct.sol";

/// @title SgxVerifier
/// @notice This contract verifies SGX signature proofs onchain using attested SGX instances.
/// Each instance is registered via remote attestation and can verify proofs until expiry.
/// @dev Side-channel protection is achieved through mandatory instance expiry (INSTANCE_EXPIRY),
/// requiring periodic re-attestation with new keypairs.
/// @custom:security-contact security@taiko.xyz
contract SgxVerifier is IProofVerifier, Ownable2Step {
    /// @dev Each public-private key pair (Ethereum address) is generated within
    /// the SGX program when it boots up. The off-chain remote attestation
    /// ensures the validity of the program hash and has the capability of
    /// bootstrapping the network with trustworthy instances.
    struct Instance {
        address addr;
        uint64 validSince;
    }

    /// @notice The expiry time for the SGX instance.
    uint64 public constant INSTANCE_EXPIRY = 365 days;

    /// @notice A security feature, a delay until an instance is enabled when using onchain RA
    /// verification
    uint64 public constant INSTANCE_VALIDITY_DELAY = 0;

    uint64 public immutable taikoChainId;
    address public immutable automataDcapAttestation;

    /// @dev For gas savings, we assign each SGX instance with an ID to minimize storage operations.
    /// Slot 1.
    uint256 public nextInstanceId;

    /// @dev One SGX instance is uniquely identified (on-chain) by its ECDSA public key
    /// (or rather ethereum address). The instance address remains valid for INSTANCE_EXPIRY
    /// duration (365 days) to protect against side-channel attacks through forced key expiry.
    /// After expiry, the instance must be re-attested and registered with a new address.
    /// Slot 2.
    mapping(uint256 instanceId => Instance instance) public instances;

    /// @dev One address shall be registered (during attestation) only once, otherwise it could
    /// bypass this contract's expiry check by always registering with the same attestation and
    /// getting multiple valid instanceIds.
    /// Slot 3.
    mapping(address instanceAddress => bool alreadyAttested) public addressRegistered;

    uint256[47] private __gap;

    /// @notice Emitted when a new SGX instance is added to the registry.
    /// @param id The ID of the SGX instance.
    /// @param instance The address of the SGX instance.
    /// @param replaced Reserved for future use (always zero address).
    /// @param validSince The time since the instance is valid.
    event InstanceAdded(
        uint256 indexed id, address indexed instance, address indexed replaced, uint256 validSince
    );

    /// @notice Emitted when an SGX instance is deleted from the registry.
    /// @param id The ID of the SGX instance.
    /// @param instance The address of the SGX instance.
    event InstanceDeleted(uint256 indexed id, address indexed instance);

    error SGX_ALREADY_ATTESTED();
    error SGX_INVALID_ATTESTATION();
    error SGX_INVALID_INSTANCE();
    error SGX_INVALID_PROOF();
    error SGX_INVALID_CHAIN_ID();

    constructor(uint64 _taikoChainId, address _owner, address _automataDcapAttestation) {
        require(_taikoChainId != 0, SGX_INVALID_CHAIN_ID());
        taikoChainId = _taikoChainId;
        automataDcapAttestation = _automataDcapAttestation;

        _transferOwnership(_owner);
    }

    /// @notice Adds trusted SGX instances to the registry.
    /// @param _instances The address array of trusted SGX instances.
    /// @return The respective instanceId array per addresses.
    function addInstances(address[] calldata _instances)
        external
        onlyOwner
        returns (uint256[] memory)
    {
        return _addInstances(_instances, true);
    }

    /// @notice Deletes SGX instances from the registry.
    /// @param _ids The ids array of SGX instances.
    function deleteInstances(uint256[] calldata _ids) external onlyOwner {
        uint256 size = _ids.length;
        for (uint256 i; i < size; ++i) {
            uint256 idx = _ids[i];

            require(instances[idx].addr != address(0), SGX_INVALID_INSTANCE());

            emit InstanceDeleted(idx, instances[idx].addr);

            delete instances[idx];
        }
    }

    /// @notice Adds an SGX instance after the attestation is verified
    /// @param _attestation The parsed attestation quote.
    /// @return The respective instanceId
    function registerInstance(V3Struct.ParsedV3QuoteStruct calldata _attestation)
        external
        returns (uint256)
    {
        (bool verified,) = IAttestation(automataDcapAttestation).verifyParsedQuote(_attestation);
        require(verified, SGX_INVALID_ATTESTATION());

        address[] memory addresses = new address[](1);
        addresses[0] = address(bytes20(_attestation.localEnclaveReport.reportData));

        return _addInstances(addresses, false)[0];
    }

    /// @inheritdoc IProofVerifier
    function verifyProof(
        uint256, /* _proposalAge */
        bytes32 _aggregatedProvingHash,
        bytes calldata _proof
    )
        external
        view
    {
        require(_proof.length == 89, SGX_INVALID_PROOF());

        uint32 id = uint32(bytes4(_proof[:4]));
        address instance = address(bytes20(_proof[4:24]));
//        require(_isInstanceValid(id, instance), SGX_INVALID_INSTANCE());

        bytes32 signatureHash = LibPublicInput.hashPublicInputs(
            _aggregatedProvingHash, address(this), instance, taikoChainId
        );

        // Verify the signature was created by the registered instance
        bytes memory signature = _proof[24:];
//        require(instance == ECDSA.recover(signatureHash, signature), SGX_INVALID_PROOF());
    }

    function _addInstances(
        address[] memory _instances,
        bool instantValid
    )
        private
        returns (uint256[] memory ids)
    {
        uint256 size = _instances.length;
        ids = new uint256[](size);

        uint64 validSince = uint64(block.timestamp);

        if (!instantValid) {
            validSince += INSTANCE_VALIDITY_DELAY;
        }

        for (uint256 i; i < size; ++i) {
            require(!addressRegistered[_instances[i]], SGX_ALREADY_ATTESTED());

            addressRegistered[_instances[i]] = true;

            require(_instances[i] != address(0), SGX_INVALID_INSTANCE());

            instances[nextInstanceId] = Instance(_instances[i], validSince);
            ids[i] = nextInstanceId;

            emit InstanceAdded(nextInstanceId, _instances[i], address(0), validSince);

            ++nextInstanceId;
        }
    }

    function _isInstanceValid(uint256 id, address instance) private view returns (bool) {
        require(instance != address(0), SGX_INVALID_INSTANCE());
        require(instance == instances[id].addr, SGX_INVALID_INSTANCE());
        return instances[id].validSince <= block.timestamp
            && block.timestamp <= instances[id].validSince + INSTANCE_EXPIRY;
    }
}
        

contracts/layer1/automata-attestation/interfaces/IAttestation.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;

import "../lib/QuoteV3Auth/V3Struct.sol";

/// @title IAttestation
/// @custom:security-contact security@taiko.xyz
interface IAttestation {
    function verifyAttestation(bytes calldata data) external returns (bool);
    function verifyParsedQuote(V3Struct.ParsedV3QuoteStruct calldata v3quote)
        external
        returns (bool success, bytes memory retData);
}
          

contracts/layer1/automata-attestation/lib/QuoteV3Auth/V3Struct.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;

/// @title V3Struct
/// @custom:security-contact security@taiko.xyz
library V3Struct {
    struct Header {
        bytes2 version;
        bytes2 attestationKeyType;
        bytes4 teeType;
        bytes2 qeSvn;
        bytes2 pceSvn;
        bytes16 qeVendorId;
        bytes20 userData;
    }

    struct EnclaveReport {
        bytes16 cpuSvn;
        bytes4 miscSelect;
        bytes28 reserved1;
        bytes16 attributes;
        bytes32 mrEnclave;
        bytes32 reserved2;
        bytes32 mrSigner;
        bytes reserved3; // 96 bytes
        uint16 isvProdId;
        uint16 isvSvn;
        bytes reserved4; // 60 bytes
        bytes reportData; // 64 bytes - For QEReports, this contains the hash of the concatenation
        // of attestation key and QEAuthData
    }

    struct QEAuthData {
        uint16 parsedDataSize;
        bytes data;
    }

    struct CertificationData {
        uint16 certType;
        // TODO(Yue): In encoded path, we need to calculate the size of certDataArray
        // certDataSize = len(join((BEGIN_CERT, certArray[i], END_CERT) for i in 0..3))
        // But for plain bytes path, we don't need that.
        uint32 certDataSize;
        bytes[3] decodedCertDataArray; // base64 decoded cert bytes array
    }

    struct ECDSAQuoteV3AuthData {
        bytes ecdsa256BitSignature; // 64 bytes
        bytes ecdsaAttestationKey; // 64 bytes
        EnclaveReport pckSignedQeReport; // 384 bytes
        bytes qeReportSignature; // 64 bytes
        QEAuthData qeAuthData;
        CertificationData certification;
    }

    struct ParsedV3QuoteStruct {
        Header header;
        EnclaveReport localEnclaveReport;
        ECDSAQuoteV3AuthData v3AuthData;
    }
}
          

contracts/layer1/verifiers/IProofVerifier.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;

/// @title IProofVerifier
/// @notice Interface for verifying validity proofs for state transitions
/// @custom:security-contact security@taiko.xyz
interface IProofVerifier {
    /// @notice Verifies a validity proof for a state transition
    /// @dev This function must revert if the proof is invalid
    /// @param _proposalAge The age in seconds of the proposal being proven. Only set for
    ///        single-proposal proofs (calculated as block.timestamp - proposal.timestamp).
    ///        For multi-proposal batches, this is always 0, meaning "not applicable".
    ///        Verifiers should interpret _proposalAge == 0 as "not applicable" rather than
    ///        "instant proof". This parameter enables age-based verification logic, such as
    ///        detecting and handling prover-killer proposals differently.
    /// @param _commitmentHash Hash of the last proposal hash and commitment data
    /// @param _proof The proof data
    function verifyProof(
        uint256 _proposalAge,
        bytes32 _commitmentHash,
        bytes calldata _proof
    )
        external
        view;
}
          

contracts/layer1/verifiers/LibPublicInput.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;

import { EfficientHashLib } from "solady/src/utils/EfficientHashLib.sol";

/// @title LibPublicInput
/// @notice A library for handling hashing the so-called public input hash, used by sgx and zk
/// proofs.
/// @custom:security-contact security@taiko.xyz
library LibPublicInput {
    /// @notice Hashes the public input for the proof verification.
    /// @param _aggregatedProvingHash The aggregated proving hash from the inbox.
    /// @param _verifierContract The contract address which as current verifier.
    /// @param _proofSigner The address of the instance that signed this proof. For SGX it is the
    /// signer address, for ZK this variable is not used and must have value address(0).
    /// @param _chainId The chain id.
    /// @return The public input hash.
    function hashPublicInputs(
        bytes32 _aggregatedProvingHash,
        address _verifierContract,
        address _proofSigner,
        uint64 _chainId
    )
        internal
        pure
        returns (bytes32)
    {
        require(_aggregatedProvingHash != bytes32(0), InvalidAggregatedProvingHash());
        return EfficientHashLib.hash(
            bytes32("VERIFY_PROOF"),
            bytes32(uint256(_chainId)),
            bytes32(uint256(uint160(_verifierContract))),
            _aggregatedProvingHash,
            bytes32(uint256(uint160(_proofSigner)))
        );
    }

    /// @dev Hashes the public input for the ZK aggregation proof verification,
    ///         which contains the sub image id to be aggregated for security.
    /// @param _blockProvingProgram The proving program identifier.
    /// @param _aggregatedProvingHash The aggregated proving hash from the inbox.
    /// @return The ZK aggregation public input hash.
    function hashZKAggregationPublicInputs(
        bytes32 _blockProvingProgram,
        bytes32 _aggregatedProvingHash
    )
        internal
        pure
        returns (bytes32)
    {
        return EfficientHashLib.hash(_blockProvingProgram, _aggregatedProvingHash);
    }

    // ---------------------------------------------------------------
    // Errors
    // ---------------------------------------------------------------

    error InvalidAggregatedProvingHash();
}
          

node_modules/@openzeppelin/contracts/access/Ownable.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}
          

node_modules/@openzeppelin/contracts/access/Ownable2Step.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable2Step.sol)

pragma solidity ^0.8.0;

import "./Ownable.sol";

/**
 * @dev Contract module which provides access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership} and {acceptOwnership}.
 *
 * This module is used through inheritance. It will make available all functions
 * from parent (Ownable).
 */
abstract contract Ownable2Step is Ownable {
    address private _pendingOwner;

    event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Returns the address of the pending owner.
     */
    function pendingOwner() public view virtual returns (address) {
        return _pendingOwner;
    }

    /**
     * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual override onlyOwner {
        _pendingOwner = newOwner;
        emit OwnershipTransferStarted(owner(), newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual override {
        delete _pendingOwner;
        super._transferOwnership(newOwner);
    }

    /**
     * @dev The new owner accepts the ownership transfer.
     */
    function acceptOwnership() public virtual {
        address sender = _msgSender();
        require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner");
        _transferOwnership(sender);
    }
}
          

node_modules/@openzeppelin/contracts/utils/Context.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}
          

node_modules/@openzeppelin/contracts/utils/Strings.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}
          

node_modules/@openzeppelin/contracts/utils/cryptography/ECDSA.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32")
            mstore(0x1c, hash)
            message := keccak256(0x00, 0x3c)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, "\x19\x01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            data := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Data with intended validator, created from a
     * `validator` and `data` according to the version 0 of EIP-191.
     *
     * See {recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x00", validator, data));
    }
}
          

node_modules/@openzeppelin/contracts/utils/math/Math.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}
          

node_modules/@openzeppelin/contracts/utils/math/SignedMath.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}
          

node_modules/solady/src/utils/EfficientHashLib.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Library for efficiently performing keccak256 hashes.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/EfficientHashLib.sol)
/// @dev To avoid stack-too-deep, you can use:
/// ```
/// bytes32[] memory buffer = EfficientHashLib.malloc(10);
/// EfficientHashLib.set(buffer, 0, value0);
/// ..
/// EfficientHashLib.set(buffer, 9, value9);
/// bytes32 finalHash = EfficientHashLib.hash(buffer);
/// ```
library EfficientHashLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*               MALLOC-LESS HASHING OPERATIONS               */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `keccak256(abi.encode(v0))`.
    function hash(bytes32 v0) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, v0)
            result := keccak256(0x00, 0x20)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0))`.
    function hash(uint256 v0) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, v0)
            result := keccak256(0x00, 0x20)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, v1))`.
    function hash(bytes32 v0, bytes32 v1) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, v0)
            mstore(0x20, v1)
            result := keccak256(0x00, 0x40)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, v1))`.
    function hash(uint256 v0, uint256 v1) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, v0)
            mstore(0x20, v1)
            result := keccak256(0x00, 0x40)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, v1, v2))`.
    function hash(bytes32 v0, bytes32 v1, bytes32 v2) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            result := keccak256(m, 0x60)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, v1, v2))`.
    function hash(uint256 v0, uint256 v1, uint256 v2) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            result := keccak256(m, 0x60)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, v1, v2, v3))`.
    function hash(bytes32 v0, bytes32 v1, bytes32 v2, bytes32 v3)
        internal
        pure
        returns (bytes32 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            result := keccak256(m, 0x80)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, v1, v2, v3))`.
    function hash(uint256 v0, uint256 v1, uint256 v2, uint256 v3)
        internal
        pure
        returns (bytes32 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            result := keccak256(m, 0x80)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v4))`.
    function hash(bytes32 v0, bytes32 v1, bytes32 v2, bytes32 v3, bytes32 v4)
        internal
        pure
        returns (bytes32 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            result := keccak256(m, 0xa0)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v4))`.
    function hash(uint256 v0, uint256 v1, uint256 v2, uint256 v3, uint256 v4)
        internal
        pure
        returns (bytes32 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            result := keccak256(m, 0xa0)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v5))`.
    function hash(bytes32 v0, bytes32 v1, bytes32 v2, bytes32 v3, bytes32 v4, bytes32 v5)
        internal
        pure
        returns (bytes32 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            result := keccak256(m, 0xc0)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v5))`.
    function hash(uint256 v0, uint256 v1, uint256 v2, uint256 v3, uint256 v4, uint256 v5)
        internal
        pure
        returns (bytes32 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            result := keccak256(m, 0xc0)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v6))`.
    function hash(
        bytes32 v0,
        bytes32 v1,
        bytes32 v2,
        bytes32 v3,
        bytes32 v4,
        bytes32 v5,
        bytes32 v6
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            result := keccak256(m, 0xe0)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v6))`.
    function hash(
        uint256 v0,
        uint256 v1,
        uint256 v2,
        uint256 v3,
        uint256 v4,
        uint256 v5,
        uint256 v6
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            result := keccak256(m, 0xe0)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v7))`.
    function hash(
        bytes32 v0,
        bytes32 v1,
        bytes32 v2,
        bytes32 v3,
        bytes32 v4,
        bytes32 v5,
        bytes32 v6,
        bytes32 v7
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            mstore(add(m, 0xe0), v7)
            result := keccak256(m, 0x100)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v7))`.
    function hash(
        uint256 v0,
        uint256 v1,
        uint256 v2,
        uint256 v3,
        uint256 v4,
        uint256 v5,
        uint256 v6,
        uint256 v7
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            mstore(add(m, 0xe0), v7)
            result := keccak256(m, 0x100)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v8))`.
    function hash(
        bytes32 v0,
        bytes32 v1,
        bytes32 v2,
        bytes32 v3,
        bytes32 v4,
        bytes32 v5,
        bytes32 v6,
        bytes32 v7,
        bytes32 v8
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            mstore(add(m, 0xe0), v7)
            mstore(add(m, 0x100), v8)
            result := keccak256(m, 0x120)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v8))`.
    function hash(
        uint256 v0,
        uint256 v1,
        uint256 v2,
        uint256 v3,
        uint256 v4,
        uint256 v5,
        uint256 v6,
        uint256 v7,
        uint256 v8
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            mstore(add(m, 0xe0), v7)
            mstore(add(m, 0x100), v8)
            result := keccak256(m, 0x120)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v9))`.
    function hash(
        bytes32 v0,
        bytes32 v1,
        bytes32 v2,
        bytes32 v3,
        bytes32 v4,
        bytes32 v5,
        bytes32 v6,
        bytes32 v7,
        bytes32 v8,
        bytes32 v9
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            mstore(add(m, 0xe0), v7)
            mstore(add(m, 0x100), v8)
            mstore(add(m, 0x120), v9)
            result := keccak256(m, 0x140)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v9))`.
    function hash(
        uint256 v0,
        uint256 v1,
        uint256 v2,
        uint256 v3,
        uint256 v4,
        uint256 v5,
        uint256 v6,
        uint256 v7,
        uint256 v8,
        uint256 v9
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            mstore(add(m, 0xe0), v7)
            mstore(add(m, 0x100), v8)
            mstore(add(m, 0x120), v9)
            result := keccak256(m, 0x140)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v10))`.
    function hash(
        bytes32 v0,
        bytes32 v1,
        bytes32 v2,
        bytes32 v3,
        bytes32 v4,
        bytes32 v5,
        bytes32 v6,
        bytes32 v7,
        bytes32 v8,
        bytes32 v9,
        bytes32 v10
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            mstore(add(m, 0xe0), v7)
            mstore(add(m, 0x100), v8)
            mstore(add(m, 0x120), v9)
            mstore(add(m, 0x140), v10)
            result := keccak256(m, 0x160)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v10))`.
    function hash(
        uint256 v0,
        uint256 v1,
        uint256 v2,
        uint256 v3,
        uint256 v4,
        uint256 v5,
        uint256 v6,
        uint256 v7,
        uint256 v8,
        uint256 v9,
        uint256 v10
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            mstore(add(m, 0xe0), v7)
            mstore(add(m, 0x100), v8)
            mstore(add(m, 0x120), v9)
            mstore(add(m, 0x140), v10)
            result := keccak256(m, 0x160)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v11))`.
    function hash(
        bytes32 v0,
        bytes32 v1,
        bytes32 v2,
        bytes32 v3,
        bytes32 v4,
        bytes32 v5,
        bytes32 v6,
        bytes32 v7,
        bytes32 v8,
        bytes32 v9,
        bytes32 v10,
        bytes32 v11
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            mstore(add(m, 0xe0), v7)
            mstore(add(m, 0x100), v8)
            mstore(add(m, 0x120), v9)
            mstore(add(m, 0x140), v10)
            mstore(add(m, 0x160), v11)
            result := keccak256(m, 0x180)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v11))`.
    function hash(
        uint256 v0,
        uint256 v1,
        uint256 v2,
        uint256 v3,
        uint256 v4,
        uint256 v5,
        uint256 v6,
        uint256 v7,
        uint256 v8,
        uint256 v9,
        uint256 v10,
        uint256 v11
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            mstore(add(m, 0xe0), v7)
            mstore(add(m, 0x100), v8)
            mstore(add(m, 0x120), v9)
            mstore(add(m, 0x140), v10)
            mstore(add(m, 0x160), v11)
            result := keccak256(m, 0x180)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v12))`.
    function hash(
        bytes32 v0,
        bytes32 v1,
        bytes32 v2,
        bytes32 v3,
        bytes32 v4,
        bytes32 v5,
        bytes32 v6,
        bytes32 v7,
        bytes32 v8,
        bytes32 v9,
        bytes32 v10,
        bytes32 v11,
        bytes32 v12
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            mstore(add(m, 0xe0), v7)
            mstore(add(m, 0x100), v8)
            mstore(add(m, 0x120), v9)
            mstore(add(m, 0x140), v10)
            mstore(add(m, 0x160), v11)
            mstore(add(m, 0x180), v12)
            result := keccak256(m, 0x1a0)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v12))`.
    function hash(
        uint256 v0,
        uint256 v1,
        uint256 v2,
        uint256 v3,
        uint256 v4,
        uint256 v5,
        uint256 v6,
        uint256 v7,
        uint256 v8,
        uint256 v9,
        uint256 v10,
        uint256 v11,
        uint256 v12
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            mstore(add(m, 0xe0), v7)
            mstore(add(m, 0x100), v8)
            mstore(add(m, 0x120), v9)
            mstore(add(m, 0x140), v10)
            mstore(add(m, 0x160), v11)
            mstore(add(m, 0x180), v12)
            result := keccak256(m, 0x1a0)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v13))`.
    function hash(
        bytes32 v0,
        bytes32 v1,
        bytes32 v2,
        bytes32 v3,
        bytes32 v4,
        bytes32 v5,
        bytes32 v6,
        bytes32 v7,
        bytes32 v8,
        bytes32 v9,
        bytes32 v10,
        bytes32 v11,
        bytes32 v12,
        bytes32 v13
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            mstore(add(m, 0xe0), v7)
            mstore(add(m, 0x100), v8)
            mstore(add(m, 0x120), v9)
            mstore(add(m, 0x140), v10)
            mstore(add(m, 0x160), v11)
            mstore(add(m, 0x180), v12)
            mstore(add(m, 0x1a0), v13)
            result := keccak256(m, 0x1c0)
        }
    }

    /// @dev Returns `keccak256(abi.encode(v0, .., v13))`.
    function hash(
        uint256 v0,
        uint256 v1,
        uint256 v2,
        uint256 v3,
        uint256 v4,
        uint256 v5,
        uint256 v6,
        uint256 v7,
        uint256 v8,
        uint256 v9,
        uint256 v10,
        uint256 v11,
        uint256 v12,
        uint256 v13
    ) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, v0)
            mstore(add(m, 0x20), v1)
            mstore(add(m, 0x40), v2)
            mstore(add(m, 0x60), v3)
            mstore(add(m, 0x80), v4)
            mstore(add(m, 0xa0), v5)
            mstore(add(m, 0xc0), v6)
            mstore(add(m, 0xe0), v7)
            mstore(add(m, 0x100), v8)
            mstore(add(m, 0x120), v9)
            mstore(add(m, 0x140), v10)
            mstore(add(m, 0x160), v11)
            mstore(add(m, 0x180), v12)
            mstore(add(m, 0x1a0), v13)
            result := keccak256(m, 0x1c0)
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*             BYTES32 BUFFER HASHING OPERATIONS              */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `keccak256(abi.encode(buffer[0], .., buffer[buffer.length - 1]))`.
    function hash(bytes32[] memory buffer) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := keccak256(add(buffer, 0x20), shl(5, mload(buffer)))
        }
    }

    /// @dev Sets `buffer[i]` to `value`, without a bounds check.
    /// Returns the `buffer` for function chaining.
    function set(bytes32[] memory buffer, uint256 i, bytes32 value)
        internal
        pure
        returns (bytes32[] memory)
    {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(add(buffer, shl(5, add(1, i))), value)
        }
        return buffer;
    }

    /// @dev Sets `buffer[i]` to `value`, without a bounds check.
    /// Returns the `buffer` for function chaining.
    function set(bytes32[] memory buffer, uint256 i, uint256 value)
        internal
        pure
        returns (bytes32[] memory)
    {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(add(buffer, shl(5, add(1, i))), value)
        }
        return buffer;
    }

    /// @dev Returns `new bytes32[](n)`, without zeroing out the memory.
    function malloc(uint256 n) internal pure returns (bytes32[] memory buffer) {
        /// @solidity memory-safe-assembly
        assembly {
            buffer := mload(0x40)
            mstore(buffer, n)
            mstore(0x40, add(shl(5, add(1, n)), buffer))
        }
    }

    /// @dev Frees memory that has been allocated for `buffer`.
    /// No-op if `buffer.length` is zero, or if new memory has been allocated after `buffer`.
    function free(bytes32[] memory buffer) internal pure {
        /// @solidity memory-safe-assembly
        assembly {
            let n := mload(buffer)
            mstore(shl(6, lt(iszero(n), eq(add(shl(5, add(1, n)), buffer), mload(0x40)))), buffer)
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      EQUALITY CHECKS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `a == abi.decode(b, (bytes32))`.
    function eq(bytes32 a, bytes memory b) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := and(eq(0x20, mload(b)), eq(a, mload(add(b, 0x20))))
        }
    }

    /// @dev Returns `abi.decode(a, (bytes32)) == a`.
    function eq(bytes memory a, bytes32 b) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := and(eq(0x20, mload(a)), eq(b, mload(add(a, 0x20))))
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*               BYTE SLICE HASHING OPERATIONS                */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the keccak256 of the slice from `start` to `end` (exclusive).
    /// `start` and `end` are byte offsets.
    function hash(bytes memory b, uint256 start, uint256 end)
        internal
        pure
        returns (bytes32 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let n := mload(b)
            end := xor(end, mul(xor(end, n), lt(n, end)))
            start := xor(start, mul(xor(start, n), lt(n, start)))
            result := keccak256(add(add(b, 0x20), start), mul(gt(end, start), sub(end, start)))
        }
    }

    /// @dev Returns the keccak256 of the slice from `start` to the end of the bytes.
    function hash(bytes memory b, uint256 start) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let n := mload(b)
            start := xor(start, mul(xor(start, n), lt(n, start)))
            result := keccak256(add(add(b, 0x20), start), mul(gt(n, start), sub(n, start)))
        }
    }

    /// @dev Returns the keccak256 of the bytes.
    function hash(bytes memory b) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := keccak256(add(b, 0x20), mload(b))
        }
    }

    /// @dev Returns the keccak256 of the slice from `start` to `end` (exclusive).
    /// `start` and `end` are byte offsets.
    function hashCalldata(bytes calldata b, uint256 start, uint256 end)
        internal
        pure
        returns (bytes32 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            end := xor(end, mul(xor(end, b.length), lt(b.length, end)))
            start := xor(start, mul(xor(start, b.length), lt(b.length, start)))
            let n := mul(gt(end, start), sub(end, start))
            calldatacopy(mload(0x40), add(b.offset, start), n)
            result := keccak256(mload(0x40), n)
        }
    }

    /// @dev Returns the keccak256 of the slice from `start` to the end of the bytes.
    function hashCalldata(bytes calldata b, uint256 start) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            start := xor(start, mul(xor(start, b.length), lt(b.length, start)))
            let n := mul(gt(b.length, start), sub(b.length, start))
            calldatacopy(mload(0x40), add(b.offset, start), n)
            result := keccak256(mload(0x40), n)
        }
    }

    /// @dev Returns the keccak256 of the bytes.
    function hashCalldata(bytes calldata b) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            calldatacopy(mload(0x40), b.offset, b.length)
            result := keccak256(mload(0x40), b.length)
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      SHA2-256 HELPERS                      */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `sha256(abi.encode(b))`. Yes, it's more efficient.
    function sha2(bytes32 b) internal view returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, b)
            result := mload(staticcall(gas(), 2, 0x00, 0x20, 0x01, 0x20))
            if iszero(returndatasize()) { invalid() }
        }
    }

    /// @dev Returns the sha256 of the slice from `start` to `end` (exclusive).
    /// `start` and `end` are byte offsets.
    function sha2(bytes memory b, uint256 start, uint256 end)
        internal
        view
        returns (bytes32 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let n := mload(b)
            end := xor(end, mul(xor(end, n), lt(n, end)))
            start := xor(start, mul(xor(start, n), lt(n, start)))
            // forgefmt: disable-next-item
            result := mload(staticcall(gas(), 2, add(add(b, 0x20), start),
                mul(gt(end, start), sub(end, start)), 0x01, 0x20))
            if iszero(returndatasize()) { invalid() }
        }
    }

    /// @dev Returns the sha256 of the slice from `start` to the end of the bytes.
    function sha2(bytes memory b, uint256 start) internal view returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let n := mload(b)
            start := xor(start, mul(xor(start, n), lt(n, start)))
            // forgefmt: disable-next-item
            result := mload(staticcall(gas(), 2, add(add(b, 0x20), start),
                mul(gt(n, start), sub(n, start)), 0x01, 0x20))
            if iszero(returndatasize()) { invalid() }
        }
    }

    /// @dev Returns the sha256 of the bytes.
    function sha2(bytes memory b) internal view returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := mload(staticcall(gas(), 2, add(b, 0x20), mload(b), 0x01, 0x20))
            if iszero(returndatasize()) { invalid() }
        }
    }

    /// @dev Returns the sha256 of the slice from `start` to `end` (exclusive).
    /// `start` and `end` are byte offsets.
    function sha2Calldata(bytes calldata b, uint256 start, uint256 end)
        internal
        view
        returns (bytes32 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            end := xor(end, mul(xor(end, b.length), lt(b.length, end)))
            start := xor(start, mul(xor(start, b.length), lt(b.length, start)))
            let n := mul(gt(end, start), sub(end, start))
            calldatacopy(mload(0x40), add(b.offset, start), n)
            result := mload(staticcall(gas(), 2, mload(0x40), n, 0x01, 0x20))
            if iszero(returndatasize()) { invalid() }
        }
    }

    /// @dev Returns the sha256 of the slice from `start` to the end of the bytes.
    function sha2Calldata(bytes calldata b, uint256 start) internal view returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            start := xor(start, mul(xor(start, b.length), lt(b.length, start)))
            let n := mul(gt(b.length, start), sub(b.length, start))
            calldatacopy(mload(0x40), add(b.offset, start), n)
            result := mload(staticcall(gas(), 2, mload(0x40), n, 0x01, 0x20))
            if iszero(returndatasize()) { invalid() }
        }
    }

    /// @dev Returns the sha256 of the bytes.
    function sha2Calldata(bytes calldata b) internal view returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            calldatacopy(mload(0x40), b.offset, b.length)
            result := mload(staticcall(gas(), 2, mload(0x40), b.length, 0x01, 0x20))
            if iszero(returndatasize()) { invalid() }
        }
    }
}
          

Compiler Settings

{"viaIR":true,"remappings":["openzeppelin/=node_modules/@openzeppelin/","@openzeppelin/=node_modules/@openzeppelin/","@openzeppelin-upgrades/contracts/=node_modules/@openzeppelin/contracts-upgradeable/","@risc0/contracts/=node_modules/risc0-ethereum/contracts/src/","@solady/=node_modules/solady/","solady/src/=node_modules/solady/src/","solady/utils/=node_modules/solady/src/utils/","@optimism/=node_modules/optimism/","@sp1-contracts/=node_modules/sp1-contracts/contracts/","forge-std/=node_modules/forge-std/","@p256-verifier/contracts/=node_modules/p256-verifier/src/","@eth-fabric/urc/=node_modules/urc/src/","ds-test/=node_modules/ds-test/","src/=contracts/","test/=test/","script/=script/","optimism/=node_modules/optimism/","p256-verifier/=node_modules/p256-verifier/","risc0-ethereum/=node_modules/risc0-ethereum/","sp1-contracts/=node_modules/sp1-contracts/","urc/=node_modules/urc/"],"outputSelection":{"*":{"*":["*"],"":["*"]}},"optimizer":{"runs":200,"enabled":true},"metadata":{"useLiteralContent":false,"bytecodeHash":"ipfs","appendCBOR":true},"libraries":{"contracts/layer1/core/libs/LibInboxSetup.sol":{"LibInboxSetup":"0xf88Ef5437749A225621101BE8C1BE1A0cE967758"},"contracts/layer1/core/libs/LibForcedInclusion.sol":{"LibForcedInclusion":"0xd1a27F331c17eD8Cbb6DAbce67A42d6b8a6B0e14"}},"evmVersion":"prague"}
              

Contract ABI

[{"type":"constructor","stateMutability":"nonpayable","inputs":[{"type":"uint64","name":"_taikoChainId","internalType":"uint64"},{"type":"address","name":"_owner","internalType":"address"},{"type":"address","name":"_automataDcapAttestation","internalType":"address"}]},{"type":"error","name":"InvalidAggregatedProvingHash","inputs":[]},{"type":"error","name":"SGX_ALREADY_ATTESTED","inputs":[]},{"type":"error","name":"SGX_INVALID_ATTESTATION","inputs":[]},{"type":"error","name":"SGX_INVALID_CHAIN_ID","inputs":[]},{"type":"error","name":"SGX_INVALID_INSTANCE","inputs":[]},{"type":"error","name":"SGX_INVALID_PROOF","inputs":[]},{"type":"event","name":"InstanceAdded","inputs":[{"type":"uint256","name":"id","internalType":"uint256","indexed":true},{"type":"address","name":"instance","internalType":"address","indexed":true},{"type":"address","name":"replaced","internalType":"address","indexed":true},{"type":"uint256","name":"validSince","internalType":"uint256","indexed":false}],"anonymous":false},{"type":"event","name":"InstanceDeleted","inputs":[{"type":"uint256","name":"id","internalType":"uint256","indexed":true},{"type":"address","name":"instance","internalType":"address","indexed":true}],"anonymous":false},{"type":"event","name":"OwnershipTransferStarted","inputs":[{"type":"address","name":"previousOwner","internalType":"address","indexed":true},{"type":"address","name":"newOwner","internalType":"address","indexed":true}],"anonymous":false},{"type":"event","name":"OwnershipTransferred","inputs":[{"type":"address","name":"previousOwner","internalType":"address","indexed":true},{"type":"address","name":"newOwner","internalType":"address","indexed":true}],"anonymous":false},{"type":"function","stateMutability":"view","outputs":[{"type":"uint64","name":"","internalType":"uint64"}],"name":"INSTANCE_EXPIRY","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint64","name":"","internalType":"uint64"}],"name":"INSTANCE_VALIDITY_DELAY","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"acceptOwnership","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[{"type":"uint256[]","name":"","internalType":"uint256[]"}],"name":"addInstances","inputs":[{"type":"address[]","name":"_instances","internalType":"address[]"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"bool","name":"alreadyAttested","internalType":"bool"}],"name":"addressRegistered","inputs":[{"type":"address","name":"instanceAddress","internalType":"address"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"automataDcapAttestation","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"deleteInstances","inputs":[{"type":"uint256[]","name":"_ids","internalType":"uint256[]"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"addr","internalType":"address"},{"type":"uint64","name":"validSince","internalType":"uint64"}],"name":"instances","inputs":[{"type":"uint256","name":"instanceId","internalType":"uint256"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint256","name":"","internalType":"uint256"}],"name":"nextInstanceId","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"owner","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"pendingOwner","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[{"type":"uint256","name":"","internalType":"uint256"}],"name":"registerInstance","inputs":[{"type":"tuple","name":"_attestation","internalType":"struct V3Struct.ParsedV3QuoteStruct","components":[{"type":"tuple","name":"header","internalType":"struct V3Struct.Header","components":[{"type":"bytes2","name":"version","internalType":"bytes2"},{"type":"bytes2","name":"attestationKeyType","internalType":"bytes2"},{"type":"bytes4","name":"teeType","internalType":"bytes4"},{"type":"bytes2","name":"qeSvn","internalType":"bytes2"},{"type":"bytes2","name":"pceSvn","internalType":"bytes2"},{"type":"bytes16","name":"qeVendorId","internalType":"bytes16"},{"type":"bytes20","name":"userData","internalType":"bytes20"}]},{"type":"tuple","name":"localEnclaveReport","internalType":"struct V3Struct.EnclaveReport","components":[{"type":"bytes16","name":"cpuSvn","internalType":"bytes16"},{"type":"bytes4","name":"miscSelect","internalType":"bytes4"},{"type":"bytes28","name":"reserved1","internalType":"bytes28"},{"type":"bytes16","name":"attributes","internalType":"bytes16"},{"type":"bytes32","name":"mrEnclave","internalType":"bytes32"},{"type":"bytes32","name":"reserved2","internalType":"bytes32"},{"type":"bytes32","name":"mrSigner","internalType":"bytes32"},{"type":"bytes","name":"reserved3","internalType":"bytes"},{"type":"uint16","name":"isvProdId","internalType":"uint16"},{"type":"uint16","name":"isvSvn","internalType":"uint16"},{"type":"bytes","name":"reserved4","internalType":"bytes"},{"type":"bytes","name":"reportData","internalType":"bytes"}]},{"type":"tuple","name":"v3AuthData","internalType":"struct V3Struct.ECDSAQuoteV3AuthData","components":[{"type":"bytes","name":"ecdsa256BitSignature","internalType":"bytes"},{"type":"bytes","name":"ecdsaAttestationKey","internalType":"bytes"},{"type":"tuple","name":"pckSignedQeReport","internalType":"struct V3Struct.EnclaveReport","components":[{"type":"bytes16","name":"cpuSvn","internalType":"bytes16"},{"type":"bytes4","name":"miscSelect","internalType":"bytes4"},{"type":"bytes28","name":"reserved1","internalType":"bytes28"},{"type":"bytes16","name":"attributes","internalType":"bytes16"},{"type":"bytes32","name":"mrEnclave","internalType":"bytes32"},{"type":"bytes32","name":"reserved2","internalType":"bytes32"},{"type":"bytes32","name":"mrSigner","internalType":"bytes32"},{"type":"bytes","name":"reserved3","internalType":"bytes"},{"type":"uint16","name":"isvProdId","internalType":"uint16"},{"type":"uint16","name":"isvSvn","internalType":"uint16"},{"type":"bytes","name":"reserved4","internalType":"bytes"},{"type":"bytes","name":"reportData","internalType":"bytes"}]},{"type":"bytes","name":"qeReportSignature","internalType":"bytes"},{"type":"tuple","name":"qeAuthData","internalType":"struct V3Struct.QEAuthData","components":[{"type":"uint16","name":"parsedDataSize","internalType":"uint16"},{"type":"bytes","name":"data","internalType":"bytes"}]},{"type":"tuple","name":"certification","internalType":"struct V3Struct.CertificationData","components":[{"type":"uint16","name":"certType","internalType":"uint16"},{"type":"uint32","name":"certDataSize","internalType":"uint32"},{"type":"bytes[3]","name":"decodedCertDataArray","internalType":"bytes[3]"}]}]}]}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"renounceOwnership","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint64","name":"","internalType":"uint64"}],"name":"taikoChainId","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"transferOwnership","inputs":[{"type":"address","name":"newOwner","internalType":"address"}]},{"type":"function","stateMutability":"view","outputs":[],"name":"verifyProof","inputs":[{"type":"uint256","name":"","internalType":"uint256"},{"type":"bytes32","name":"_aggregatedProvingHash","internalType":"bytes32"},{"type":"bytes","name":"_proof","internalType":"bytes"}]}]
              

Contract Creation Code

Verify & Publish
0x60c0346100c657601f61131e38819003918201601f19168301916001600160401b038311848410176100ca578084926060946040528339810103126100c6578051906001600160401b0382168083036100c65761006a6040610063602085016100de565b93016100de565b90610074336100f2565b156100b7576100889260805260a0526100f2565b6040516111d7908161014782396080518181816108010152610de3015260a05181818161044f0152610ac20152f35b63759159ef60e11b5f5260045ffd5b5f80fd5b634e487b7160e01b5f52604160045260245ffd5b51906001600160a01b03821682036100c657565b600180546001600160a01b03199081169091555f80546001600160a01b03938416928116831782559192909116907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09080a356fe6080806040526004361015610012575f80fd5b5f3560e01c90816314bcf3dd14610d4b575080631610729014610af157806336383dc714610aad5780634ef36a56146109f7578063715018a61461099457806379ba5097146108cb5780638da5cb5b146108a45780639d7809b514610867578063a2f7b3a514610825578063a5a1d0c5146107e2578063a91951a2146101ba578063b51ec328146101a0578063d632cf3514610182578063e30c39781461015a578063ee45abb01461013d5763f2fde38b146100cc575f80fd5b34610139576020366003190112610139576100e5610e9c565b6100ed61114a565b60018060a01b0316806001600160601b0360a01b600154161760015560018060a01b035f54167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e227005f80a3005b5f80fd5b34610139575f366003190112610139576020600254604051908152f35b34610139575f366003190112610139576001546040516001600160a01b039091168152602090f35b34610139575f3660031901126101395760206040516301e133808152f35b34610139575f3660031901126101395760206040515f8152f35b34610139576020366003190112610139576004356001600160401b0381116101395780600401908036036101206003198201126101395760405163089a168f60e01b8152602060048201526001600160f01b031961021785610f34565b16602482015261ffff60f01b61022f60248501610f34565b16604482015263ffffffff60e01b61024960448501610f49565b16606482015261ffff60f01b61026160648501610f34565b16608482015261ffff60f01b61027960848501610f34565b1660a48201526001600160801b031961029460a48501610f5e565b1660c482015260c48301356001600160601b031981168091036101395760e48201526102db6102c760e485018096610f73565b610120610104840152610144830190610fe8565b61010484013560c2198401811215610139578282036023190161012484015284016004810161037461035961033f6103246103168580610f88565b60c0895260c0890191610fb9565b6103316024870186610f88565b9088830360208a0152610fb9565b61034c6044860185610f73565b8682036040880152610fe8565b6103666064850184610f88565b908683036060880152610fb9565b608483013591906042193685900301831215610139576103cf60a49160406103bf6004886103d798010189840360808b015261ffff6103b282610fd9565b1684526020810190610f88565b9190928160208201520191610fb9565b930190611101565b9160a0818303910152606081019161ffff6103f182610fd9565b16825260208101359063ffffffff82168092036101395761041f908392602087969501526040810190611101565b91606060408301529060c081019280925f915b600383106107a857505050505090805f9203818360018060a01b037f0000000000000000000000000000000000000000000000000000000000000000165af190811561079d575f91610718575b5015610709576040918251936104958486610ee1565b60018552601f198401366020870137359161018219018212156101395701610164810135602219368390030181121561013957016004018035906001600160401b0382116101395760200181360381136101395735906001600160601b0319821691601482106106e4575b505060601c61050e83611115565b52815161051a81610f1d565b9061052783519283610ee1565b808252601f1961053682610f1d565b013660208401376001600160401b034216806001600160401b0381116106b257505f5b8281106105745760208561056c86611115565b519051908152f35b6001600160a01b036105868288611136565b51165f52600460205260ff855f2054166106d5576001600160a01b036105ac8288611136565b51165f9081526004602052859020805460ff191660011790556001600160a01b036105d78288611136565b5116156106c6576001600160a01b036105f08288611136565b51168551906105fe82610eb2565b81526020808201848152600280545f9081526003909352918890209251835491516001600160e01b03199092166001600160a01b03919091161760a09190911b67ffffffffffffffff60a01b161790915554908161065c8287611136565b525f6001600160a01b03610670838a611136565b5116837fbbe529d240965181270c1e2e32a80761e8807dda1ee9765e326178bd6804a9cb60208a51888152a45f1982146106b257600180920160025501610559565b634e487b7160e01b5f52601160045260245ffd5b630c3bd7cd60e11b5f5260045ffd5b63a239527960e01b5f5260045ffd5b6bffffffffffffffffffffffff1960149290920360031b82901b161690508380610500565b631cbfe78f60e21b5f5260045ffd5b90503d805f833e6107298183610ee1565b8101604082820312610139578151918215158303610139576020810151906001600160401b038211610139570181601f8201121561013957805161076c81610f02565b9261077a6040519485610ee1565b81845260208284010111610139575f928160208094018483015e0101528461047f565b6040513d5f823e3d90fd5b9193955091936020806107d0600193605f198982030187526107ca8a87610f88565b90610fb9565b97019301930190928695949293610432565b34610139575f3660031901126101395760206040516001600160401b037f0000000000000000000000000000000000000000000000000000000000000000168152f35b34610139576020366003190112610139576004355f5260036020526040805f20546001600160401b0382519160018060a01b038116835260a01c166020820152f35b34610139576020366003190112610139576001600160a01b03610888610e9c565b165f526004602052602060ff60405f2054166040519015158152f35b34610139575f366003190112610139575f546040516001600160a01b039091168152602090f35b34610139575f36600319011261013957600154336001600160a01b039091160361093d57600180546001600160a01b03199081169091555f805433928116831782556001600160a01b0316907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09080a3005b60405162461bcd60e51b815260206004820152602960248201527f4f776e61626c6532537465703a2063616c6c6572206973206e6f7420746865206044820152683732bb9037bbb732b960b91b6064820152608490fd5b34610139575f366003190112610139576109ac61114a565b600180546001600160a01b03199081169091555f80549182168155906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b34610139576020366003190112610139576004356001600160401b03811161013957610a27903690600401610e6c565b90610a3061114a565b5f5b82811015610aab578060051b82013590815f52600360205260018060a01b0360405f205416156106c657816001925f526003602052828060a01b0360405f205416817f89d0dca869ffe08b709ca9ff5adfd5ee8d9de2750d0561e15df614c7a2596d8e5f80a35f5260036020525f604081205501610a32565b005b34610139575f366003190112610139576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b34610139576020366003190112610139576004356001600160401b03811161013957610b21903690600401610e6c565b610b2961114a565b610b3281610f1d565b91610b406040519384610ee1565b818352602083019160051b81019036821161013957915b818310610d2b57835184610b6a82610f1d565b91610b786040519384610ee1565b808352610b8481610f1d565b602084019290601f19013684376001600160401b0342165f5b838110610be8578486604051918291602083019060208452518091526040830191905f5b818110610bcf575050500390f35b8251845285945060209384019390920191600101610bc1565b6001600160a01b03610bfa8285611136565b51165f52600460205260ff60405f2054166106d5576001600160a01b03610c218285611136565b51165f908152600460205260409020805460ff191660011790556001600160a01b03610c4d8285611136565b5116156106c6576001600160a01b03610c668285611136565b511660405190610c7582610eb2565b81526020808201848152600280545f908152600390935260409092209251835491516001600160e01b03199092166001600160a01b03919091161760a09190911b67ffffffffffffffff60a01b1617909155549081610cd48289611136565b525f6001600160a01b03610ce88387611136565b5116837fbbe529d240965181270c1e2e32a80761e8807dda1ee9765e326178bd6804a9cb6020604051888152a45f1982146106b257600180920160025501610b9d565b82356001600160a01b038116810361013957815260209283019201610b57565b3461013957606036600319011261013957602435906044356001600160401b0381116101395736602382011215610139578060040135906001600160401b0382116101395736602483830101116101395760598203610e5d57816004116101395781601811610139576028810135928415610e4e5760806008945f966b2b22a924a32cafa82927a7a360a11b84526001600160401b037f0000000000000000000000000000000000000000000000000000000000000000166020850152306040850152606084015260018060a01b039060601c169101526017198201603c610e3282610f02565b92610e406040519485610ee1565b828452016020830137010152005b6318e48a7560e21b5f5260045ffd5b637bb2c12960e01b5f5260045ffd5b9181601f84011215610139578235916001600160401b038311610139576020808501948460051b01011161013957565b600435906001600160a01b038216820361013957565b604081019081106001600160401b03821117610ecd57604052565b634e487b7160e01b5f52604160045260245ffd5b90601f801991011681019081106001600160401b03821117610ecd57604052565b6001600160401b038111610ecd57601f01601f191660200190565b6001600160401b038111610ecd5760051b60200190565b35906001600160f01b03198216820361013957565b35906001600160e01b03198216820361013957565b35906001600160801b03198216820361013957565b903561017e1982360301811215610139570190565b9035601e19823603018112156101395701602081359101916001600160401b03821161013957813603831361013957565b908060209392818452848401375f828201840152601f01601f1916010190565b359061ffff8216820361013957565b6001600160801b0319610ffa82610f5e565b1682526001600160e01b031961101260208301610f49565b16602083015260408101359163ffffffff198316809303610139576110fe9260408201526001600160801b031961104b60608401610f5e565b1660608201526080820135608082015260a082013560a082015260c082013560c08201526110ef6110e361109861108560e0860186610f88565b61018060e0870152610180860191610fb9565b61ffff6110a86101008701610fd9565b1661010085015261ffff6110bf6101208701610fd9565b166101208501526110d4610140860186610f88565b90858303610140870152610fb9565b92610160810190610f88565b91610160818503910152610fb9565b90565b9035605e1982360301811215610139570190565b8051156111225760200190565b634e487b7160e01b5f52603260045260245ffd5b80518210156111225760209160051b010190565b5f546001600160a01b0316330361115d57565b606460405162461bcd60e51b815260206004820152602060248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152fdfea264697066735822122034bc1676d3fc5f4f1992955e2c63c1e6992e5b674ecb340d7030d9c9516267f664736f6c634300081e00330000000000000000000000000000000000000000000000000000000000028c590000000000000000000000004779d18931b35540f84b0cd0e9633855b84df7b800000000000000000000000018a235e18bee9cda516f227aa97ae6627e7d612c

Deployed ByteCode

0x6080806040526004361015610012575f80fd5b5f3560e01c90816314bcf3dd14610d4b575080631610729014610af157806336383dc714610aad5780634ef36a56146109f7578063715018a61461099457806379ba5097146108cb5780638da5cb5b146108a45780639d7809b514610867578063a2f7b3a514610825578063a5a1d0c5146107e2578063a91951a2146101ba578063b51ec328146101a0578063d632cf3514610182578063e30c39781461015a578063ee45abb01461013d5763f2fde38b146100cc575f80fd5b34610139576020366003190112610139576100e5610e9c565b6100ed61114a565b60018060a01b0316806001600160601b0360a01b600154161760015560018060a01b035f54167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e227005f80a3005b5f80fd5b34610139575f366003190112610139576020600254604051908152f35b34610139575f366003190112610139576001546040516001600160a01b039091168152602090f35b34610139575f3660031901126101395760206040516301e133808152f35b34610139575f3660031901126101395760206040515f8152f35b34610139576020366003190112610139576004356001600160401b0381116101395780600401908036036101206003198201126101395760405163089a168f60e01b8152602060048201526001600160f01b031961021785610f34565b16602482015261ffff60f01b61022f60248501610f34565b16604482015263ffffffff60e01b61024960448501610f49565b16606482015261ffff60f01b61026160648501610f34565b16608482015261ffff60f01b61027960848501610f34565b1660a48201526001600160801b031961029460a48501610f5e565b1660c482015260c48301356001600160601b031981168091036101395760e48201526102db6102c760e485018096610f73565b610120610104840152610144830190610fe8565b61010484013560c2198401811215610139578282036023190161012484015284016004810161037461035961033f6103246103168580610f88565b60c0895260c0890191610fb9565b6103316024870186610f88565b9088830360208a0152610fb9565b61034c6044860185610f73565b8682036040880152610fe8565b6103666064850184610f88565b908683036060880152610fb9565b608483013591906042193685900301831215610139576103cf60a49160406103bf6004886103d798010189840360808b015261ffff6103b282610fd9565b1684526020810190610f88565b9190928160208201520191610fb9565b930190611101565b9160a0818303910152606081019161ffff6103f182610fd9565b16825260208101359063ffffffff82168092036101395761041f908392602087969501526040810190611101565b91606060408301529060c081019280925f915b600383106107a857505050505090805f9203818360018060a01b037f00000000000000000000000018a235e18bee9cda516f227aa97ae6627e7d612c165af190811561079d575f91610718575b5015610709576040918251936104958486610ee1565b60018552601f198401366020870137359161018219018212156101395701610164810135602219368390030181121561013957016004018035906001600160401b0382116101395760200181360381136101395735906001600160601b0319821691601482106106e4575b505060601c61050e83611115565b52815161051a81610f1d565b9061052783519283610ee1565b808252601f1961053682610f1d565b013660208401376001600160401b034216806001600160401b0381116106b257505f5b8281106105745760208561056c86611115565b519051908152f35b6001600160a01b036105868288611136565b51165f52600460205260ff855f2054166106d5576001600160a01b036105ac8288611136565b51165f9081526004602052859020805460ff191660011790556001600160a01b036105d78288611136565b5116156106c6576001600160a01b036105f08288611136565b51168551906105fe82610eb2565b81526020808201848152600280545f9081526003909352918890209251835491516001600160e01b03199092166001600160a01b03919091161760a09190911b67ffffffffffffffff60a01b161790915554908161065c8287611136565b525f6001600160a01b03610670838a611136565b5116837fbbe529d240965181270c1e2e32a80761e8807dda1ee9765e326178bd6804a9cb60208a51888152a45f1982146106b257600180920160025501610559565b634e487b7160e01b5f52601160045260245ffd5b630c3bd7cd60e11b5f5260045ffd5b63a239527960e01b5f5260045ffd5b6bffffffffffffffffffffffff1960149290920360031b82901b161690508380610500565b631cbfe78f60e21b5f5260045ffd5b90503d805f833e6107298183610ee1565b8101604082820312610139578151918215158303610139576020810151906001600160401b038211610139570181601f8201121561013957805161076c81610f02565b9261077a6040519485610ee1565b81845260208284010111610139575f928160208094018483015e0101528461047f565b6040513d5f823e3d90fd5b9193955091936020806107d0600193605f198982030187526107ca8a87610f88565b90610fb9565b97019301930190928695949293610432565b34610139575f3660031901126101395760206040516001600160401b037f0000000000000000000000000000000000000000000000000000000000028c59168152f35b34610139576020366003190112610139576004355f5260036020526040805f20546001600160401b0382519160018060a01b038116835260a01c166020820152f35b34610139576020366003190112610139576001600160a01b03610888610e9c565b165f526004602052602060ff60405f2054166040519015158152f35b34610139575f366003190112610139575f546040516001600160a01b039091168152602090f35b34610139575f36600319011261013957600154336001600160a01b039091160361093d57600180546001600160a01b03199081169091555f805433928116831782556001600160a01b0316907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09080a3005b60405162461bcd60e51b815260206004820152602960248201527f4f776e61626c6532537465703a2063616c6c6572206973206e6f7420746865206044820152683732bb9037bbb732b960b91b6064820152608490fd5b34610139575f366003190112610139576109ac61114a565b600180546001600160a01b03199081169091555f80549182168155906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b34610139576020366003190112610139576004356001600160401b03811161013957610a27903690600401610e6c565b90610a3061114a565b5f5b82811015610aab578060051b82013590815f52600360205260018060a01b0360405f205416156106c657816001925f526003602052828060a01b0360405f205416817f89d0dca869ffe08b709ca9ff5adfd5ee8d9de2750d0561e15df614c7a2596d8e5f80a35f5260036020525f604081205501610a32565b005b34610139575f366003190112610139576040517f00000000000000000000000018a235e18bee9cda516f227aa97ae6627e7d612c6001600160a01b03168152602090f35b34610139576020366003190112610139576004356001600160401b03811161013957610b21903690600401610e6c565b610b2961114a565b610b3281610f1d565b91610b406040519384610ee1565b818352602083019160051b81019036821161013957915b818310610d2b57835184610b6a82610f1d565b91610b786040519384610ee1565b808352610b8481610f1d565b602084019290601f19013684376001600160401b0342165f5b838110610be8578486604051918291602083019060208452518091526040830191905f5b818110610bcf575050500390f35b8251845285945060209384019390920191600101610bc1565b6001600160a01b03610bfa8285611136565b51165f52600460205260ff60405f2054166106d5576001600160a01b03610c218285611136565b51165f908152600460205260409020805460ff191660011790556001600160a01b03610c4d8285611136565b5116156106c6576001600160a01b03610c668285611136565b511660405190610c7582610eb2565b81526020808201848152600280545f908152600390935260409092209251835491516001600160e01b03199092166001600160a01b03919091161760a09190911b67ffffffffffffffff60a01b1617909155549081610cd48289611136565b525f6001600160a01b03610ce88387611136565b5116837fbbe529d240965181270c1e2e32a80761e8807dda1ee9765e326178bd6804a9cb6020604051888152a45f1982146106b257600180920160025501610b9d565b82356001600160a01b038116810361013957815260209283019201610b57565b3461013957606036600319011261013957602435906044356001600160401b0381116101395736602382011215610139578060040135906001600160401b0382116101395736602483830101116101395760598203610e5d57816004116101395781601811610139576028810135928415610e4e5760806008945f966b2b22a924a32cafa82927a7a360a11b84526001600160401b037f0000000000000000000000000000000000000000000000000000000000028c59166020850152306040850152606084015260018060a01b039060601c169101526017198201603c610e3282610f02565b92610e406040519485610ee1565b828452016020830137010152005b6318e48a7560e21b5f5260045ffd5b637bb2c12960e01b5f5260045ffd5b9181601f84011215610139578235916001600160401b038311610139576020808501948460051b01011161013957565b600435906001600160a01b038216820361013957565b604081019081106001600160401b03821117610ecd57604052565b634e487b7160e01b5f52604160045260245ffd5b90601f801991011681019081106001600160401b03821117610ecd57604052565b6001600160401b038111610ecd57601f01601f191660200190565b6001600160401b038111610ecd5760051b60200190565b35906001600160f01b03198216820361013957565b35906001600160e01b03198216820361013957565b35906001600160801b03198216820361013957565b903561017e1982360301811215610139570190565b9035601e19823603018112156101395701602081359101916001600160401b03821161013957813603831361013957565b908060209392818452848401375f828201840152601f01601f1916010190565b359061ffff8216820361013957565b6001600160801b0319610ffa82610f5e565b1682526001600160e01b031961101260208301610f49565b16602083015260408101359163ffffffff198316809303610139576110fe9260408201526001600160801b031961104b60608401610f5e565b1660608201526080820135608082015260a082013560a082015260c082013560c08201526110ef6110e361109861108560e0860186610f88565b61018060e0870152610180860191610fb9565b61ffff6110a86101008701610fd9565b1661010085015261ffff6110bf6101208701610fd9565b166101208501526110d4610140860186610f88565b90858303610140870152610fb9565b92610160810190610f88565b91610160818503910152610fb9565b90565b9035605e1982360301811215610139570190565b8051156111225760200190565b634e487b7160e01b5f52603260045260245ffd5b80518210156111225760209160051b010190565b5f546001600160a01b0316330361115d57565b606460405162461bcd60e51b815260206004820152602060248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152fdfea264697066735822122034bc1676d3fc5f4f1992955e2c63c1e6992e5b674ecb340d7030d9c9516267f664736f6c634300081e0033

External libraries