Warning! Contract bytecode has been changed and doesn't match the verified one. Therefore, interaction with this smart contract may be risky.
- Contract name:
- SP1Verifier
- Optimization enabled
- true
- Compiler version
- v0.8.30+commit.73712a01
- Optimization runs
- 200
- EVM Version
- prague
- Verified at
- 2025-12-15T12:41:42.177898Z
Constructor Arguments
0x0000000000000000000000000000000000000000000000000000000000028c59000000000000000000000000fbfbfddd6e35da57b7b0f9a2c10e34be70b3a4e90000000000000000000000004779d18931b35540f84b0cd0e9633855b84df7b8
Arg [0] (uint64) : 167001
Arg [1] (address) : 0xfbfbfddd6e35da57b7b0f9a2c10e34be70b3a4e9
Arg [2] (address) : 0x4779d18931b35540f84b0cd0e9633855b84df7b8
contracts/layer1/verifiers/SP1Verifier.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;
import { IProofVerifier } from "./IProofVerifier.sol";
import { LibPublicInput } from "./LibPublicInput.sol";
import { Ownable2Step } from "@openzeppelin/contracts/access/Ownable2Step.sol";
import { ISP1Verifier } from "@sp1-contracts/src/ISP1Verifier.sol";
/// @title SP1Verifier
/// @custom:security-contact security@taiko.xyz
contract SP1Verifier is IProofVerifier, Ownable2Step {
bytes32 internal constant SP1_REMOTE_VERIFIER = bytes32("sp1_remote_verifier");
uint64 public immutable taikoChainId;
address public immutable sp1RemoteVerifier;
/// @notice The verification keys mappings for the proving programs.
mapping(bytes32 provingProgramVKey => bool trusted) public isProgramTrusted;
uint256[49] private __gap;
/// @dev Emitted when a trusted image is set / unset.
/// @param programVKey The id of the image
/// @param trusted The block's assigned prover.
event ProgramTrusted(bytes32 programVKey, bool trusted);
error SP1_INVALID_PROGRAM_VKEY();
error SP1_INVALID_AGGREGATION_VKEY();
error SP1_INVALID_PARAMS();
error SP1_INVALID_PROOF();
constructor(uint64 _taikoChainId, address _sp1RemoteVerifier, address _owner) {
taikoChainId = _taikoChainId;
sp1RemoteVerifier = _sp1RemoteVerifier;
_transferOwnership(_owner);
}
/// @notice Sets/unsets an the program's verification key as trusted entity
/// @param _programVKey The verification key of the program.
/// @param _trusted True if trusted, false otherwise.
function setProgramTrusted(bytes32 _programVKey, bool _trusted) external onlyOwner {
isProgramTrusted[_programVKey] = _trusted;
emit ProgramTrusted(_programVKey, _trusted);
}
/// @inheritdoc IProofVerifier
function verifyProof(
uint256, /* _proposalAge */
bytes32 _aggregatedProvingHash,
bytes calldata _proof
)
external
view
{
require(_proof.length > 64, SP1_INVALID_PARAMS());
// Extract the necessary data
bytes32 aggregationProgram = bytes32(_proof[0:32]);
bytes32 blockProvingProgram = bytes32(_proof[32:64]);
// Check if the aggregation program is trusted
require(isProgramTrusted[aggregationProgram], SP1_INVALID_AGGREGATION_VKEY());
// Check if the block proving program is trusted
require(isProgramTrusted[blockProvingProgram], SP1_INVALID_PROGRAM_VKEY());
bytes32 publicInput = LibPublicInput.hashPublicInputs(
_aggregatedProvingHash, address(this), address(0), taikoChainId
);
bytes32 sp1AggregationPublicInput =
LibPublicInput.hashZKAggregationPublicInputs(blockProvingProgram, publicInput);
// _proof[64:] is the succinct's proof position
(bool success,) = sp1RemoteVerifier.staticcall(
abi.encodeCall(
ISP1Verifier.verifyProof,
(aggregationProgram, abi.encodePacked(sp1AggregationPublicInput), _proof[64:])
)
);
require(success, SP1_INVALID_PROOF());
}
}
contracts/layer1/verifiers/IProofVerifier.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;
/// @title IProofVerifier
/// @notice Interface for verifying validity proofs for state transitions
/// @custom:security-contact security@taiko.xyz
interface IProofVerifier {
/// @notice Verifies a validity proof for a state transition
/// @dev This function must revert if the proof is invalid
/// @param _proposalAge The age in seconds of the proposal being proven. Only set for
/// single-proposal proofs (calculated as block.timestamp - proposal.timestamp).
/// For multi-proposal batches, this is always 0, meaning "not applicable".
/// Verifiers should interpret _proposalAge == 0 as "not applicable" rather than
/// "instant proof". This parameter enables age-based verification logic, such as
/// detecting and handling prover-killer proposals differently.
/// @param _commitmentHash Hash of the last proposal hash and commitment data
/// @param _proof The proof data
function verifyProof(
uint256 _proposalAge,
bytes32 _commitmentHash,
bytes calldata _proof
)
external
view;
}
contracts/layer1/verifiers/LibPublicInput.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;
import { EfficientHashLib } from "solady/src/utils/EfficientHashLib.sol";
/// @title LibPublicInput
/// @notice A library for handling hashing the so-called public input hash, used by sgx and zk
/// proofs.
/// @custom:security-contact security@taiko.xyz
library LibPublicInput {
/// @notice Hashes the public input for the proof verification.
/// @param _aggregatedProvingHash The aggregated proving hash from the inbox.
/// @param _verifierContract The contract address which as current verifier.
/// @param _proofSigner The address of the instance that signed this proof. For SGX it is the
/// signer address, for ZK this variable is not used and must have value address(0).
/// @param _chainId The chain id.
/// @return The public input hash.
function hashPublicInputs(
bytes32 _aggregatedProvingHash,
address _verifierContract,
address _proofSigner,
uint64 _chainId
)
internal
pure
returns (bytes32)
{
require(_aggregatedProvingHash != bytes32(0), InvalidAggregatedProvingHash());
return EfficientHashLib.hash(
bytes32("VERIFY_PROOF"),
bytes32(uint256(_chainId)),
bytes32(uint256(uint160(_verifierContract))),
_aggregatedProvingHash,
bytes32(uint256(uint160(_proofSigner)))
);
}
/// @dev Hashes the public input for the ZK aggregation proof verification,
/// which contains the sub image id to be aggregated for security.
/// @param _blockProvingProgram The proving program identifier.
/// @param _aggregatedProvingHash The aggregated proving hash from the inbox.
/// @return The ZK aggregation public input hash.
function hashZKAggregationPublicInputs(
bytes32 _blockProvingProgram,
bytes32 _aggregatedProvingHash
)
internal
pure
returns (bytes32)
{
return EfficientHashLib.hash(_blockProvingProgram, _aggregatedProvingHash);
}
// ---------------------------------------------------------------
// Errors
// ---------------------------------------------------------------
error InvalidAggregatedProvingHash();
}
node_modules/@openzeppelin/contracts/access/Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
node_modules/@openzeppelin/contracts/access/Ownable2Step.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.0;
import "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner");
_transferOwnership(sender);
}
}
node_modules/@openzeppelin/contracts/utils/Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
node_modules/solady/src/utils/EfficientHashLib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Library for efficiently performing keccak256 hashes.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/EfficientHashLib.sol)
/// @dev To avoid stack-too-deep, you can use:
/// ```
/// bytes32[] memory buffer = EfficientHashLib.malloc(10);
/// EfficientHashLib.set(buffer, 0, value0);
/// ..
/// EfficientHashLib.set(buffer, 9, value9);
/// bytes32 finalHash = EfficientHashLib.hash(buffer);
/// ```
library EfficientHashLib {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* MALLOC-LESS HASHING OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns `keccak256(abi.encode(v0))`.
function hash(bytes32 v0) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, v0)
result := keccak256(0x00, 0x20)
}
}
/// @dev Returns `keccak256(abi.encode(v0))`.
function hash(uint256 v0) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, v0)
result := keccak256(0x00, 0x20)
}
}
/// @dev Returns `keccak256(abi.encode(v0, v1))`.
function hash(bytes32 v0, bytes32 v1) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, v0)
mstore(0x20, v1)
result := keccak256(0x00, 0x40)
}
}
/// @dev Returns `keccak256(abi.encode(v0, v1))`.
function hash(uint256 v0, uint256 v1) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, v0)
mstore(0x20, v1)
result := keccak256(0x00, 0x40)
}
}
/// @dev Returns `keccak256(abi.encode(v0, v1, v2))`.
function hash(bytes32 v0, bytes32 v1, bytes32 v2) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40)
mstore(m, v0)
mstore(add(m, 0x20), v1)
mstore(add(m, 0x40), v2)
result := keccak256(m, 0x60)
}
}
/// @dev Returns `keccak256(abi.encode(v0, v1, v2))`.
function hash(uint256 v0, uint256 v1, uint256 v2) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40)
mstore(m, v0)
mstore(add(m, 0x20), v1)
mstore(add(m, 0x40), v2)
result := keccak256(m, 0x60)
}
}
/// @dev Returns `keccak256(abi.encode(v0, v1, v2, v3))`.
function hash(bytes32 v0, bytes32 v1, bytes32 v2, bytes32 v3)
internal
pure
returns (bytes32 result)
{
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40)
mstore(m, v0)
mstore(add(m, 0x20), v1)
mstore(add(m, 0x40), v2)
mstore(add(m, 0x60), v3)
result := keccak256(m, 0x80)
}
}
/// @dev Returns `keccak256(abi.encode(v0, v1, v2, v3))`.
function hash(uint256 v0, uint256 v1, uint256 v2, uint256 v3)
internal
pure
returns (bytes32 result)
{
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40)
mstore(m, v0)
mstore(add(m, 0x20), v1)
mstore(add(m, 0x40), v2)
mstore(add(m, 0x60), v3)
result := keccak256(m, 0x80)
}
}
/// @dev Returns `keccak256(abi.encode(v0, .., v4))`.
function hash(bytes32 v0, bytes32 v1, bytes32 v2, bytes32 v3, bytes32 v4)
internal
pure
returns (bytes32 result)
{
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40)
mstore(m, v0)
mstore(add(m, 0x20), v1)
mstore(add(m, 0x40), v2)
mstore(add(m, 0x60), v3)
mstore(add(m, 0x80), v4)
result := keccak256(m, 0xa0)
}
}
/// @dev Returns `keccak256(abi.encode(v0, .., v4))`.
function hash(uint256 v0, uint256 v1, uint256 v2, uint256 v3, uint256 v4)
internal
pure
returns (bytes32 result)
{
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40)
mstore(m, v0)
mstore(add(m, 0x20), v1)
mstore(add(m, 0x40), v2)
mstore(add(m, 0x60), v3)
mstore(add(m, 0x80), v4)
result := keccak256(m, 0xa0)
}
}
/// @dev Returns `keccak256(abi.encode(v0, .., v5))`.
function hash(bytes32 v0, bytes32 v1, bytes32 v2, bytes32 v3, bytes32 v4, bytes32 v5)
internal
pure
returns (bytes32 result)
{
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40)
mstore(m, v0)
mstore(add(m, 0x20), v1)
mstore(add(m, 0x40), v2)
mstore(add(m, 0x60), v3)
mstore(add(m, 0x80), v4)
mstore(add(m, 0xa0), v5)
result := keccak256(m, 0xc0)
}
}
/// @dev Returns `keccak256(abi.encode(v0, .., v5))`.
function hash(uint256 v0, uint256 v1, uint256 v2, uint256 v3, uint256 v4, uint256 v5)
internal
pure
returns (bytes32 result)
{
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40)
mstore(m, v0)
mstore(add(m, 0x20), v1)
mstore(add(m, 0x40), v2)
mstore(add(m, 0x60), v3)
mstore(add(m, 0x80), v4)
mstore(add(m, 0xa0), v5)
result := keccak256(m, 0xc0)
}
}
/// @dev Returns `keccak256(abi.encode(v0, .., v6))`.
function hash(
bytes32 v0,
bytes32 v1,
bytes32 v2,
bytes32 v3,
bytes32 v4,
bytes32 v5,
bytes32 v6
) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40)
mstore(m, v0)
mstore(add(m, 0x20), v1)
mstore(add(m, 0x40), v2)
mstore(add(m, 0x60), v3)
mstore(add(m, 0x80), v4)
mstore(add(m, 0xa0), v5)
mstore(add(m, 0xc0), v6)
result := keccak256(m, 0xe0)
}
}
/// @dev Returns `keccak256(abi.encode(v0, .., v6))`.
function hash(
uint256 v0,
uint256 v1,
uint256 v2,
uint256 v3,
uint256 v4,
uint256 v5,
uint256 v6
) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40)
mstore(m, v0)
mstore(add(m, 0x20), v1)
mstore(add(m, 0x40), v2)
mstore(add(m, 0x60), v3)
mstore(add(m, 0x80), v4)
mstore(add(m, 0xa0), v5)
mstore(add(m, 0xc0), v6)
result := keccak256(m, 0xe0)
}
}
/// @dev Returns `keccak256(abi.encode(v0, .., v7))`.
function hash(
bytes32 v0,
bytes32 v1,
bytes32 v2,
bytes32 v3,
bytes32 v4,
bytes32 v5,
bytes32 v6,
bytes32 v7
) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40)
mstore(m, v0)
mstore(add(m, 0x20), v1)
mstore(add(m, 0x40), v2)
mstore(add(m, 0x60), v3)
mstore(add(m, 0x80), v4)
mstore(add(m, 0xa0), v5)
mstore(add(m, 0xc0), v6)
mstore(add(m, 0xe0), v7)
result := keccak256(m, 0x100)
}
}
/// @dev Returns `keccak256(abi.encode(v0, .., v7))`.
function hash(
uint256 v0,
uint256 v1,
uint256 v2,
uint256 v3,
uint256 v4,
uint256 v5,
uint256 v6,
uint256 v7
) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40)
mstore(m, v0)
mstore(add(m, 0x20), v1)
mstore(add(m, 0x40), v2)
mstore(add(m, 0x60), v3)
mstore(add(m, 0x80), v4)
mstore(add(m, 0xa0), v5)
mstore(add(m, 0xc0), v6)
mstore(add(m, 0xe0), v7)
result := keccak256(m, 0x100)
}
}
/// @dev Returns `keccak256(abi.encode(v0, .., v8))`.
function hash(
bytes32 v0,
bytes32 v1,
bytes32 v2,
bytes32 v3,
bytes32 v4,
bytes32 v5,
bytes32 v6,
bytes32 v7,
bytes32 v8
) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40)
mstore(m, v0)
mstore(add(m, 0x20), v1)
mstore(add(m, 0x40), v2)
mstore(add(m, 0x60), v3)
mstore(add(m, 0x80), v4)
mstore(add(m, 0xa0), v5)
mstore(add(m, 0xc0), v6)
mstore(add(m, 0xe0), v7)
mstore(add(m, 0x100), v8)
result := keccak256(m, 0x120)
}
}
/// @dev Returns `keccak256(abi.encode(v0, .., v8))`.
function hash(
uint256 v0,
uint256 v1,
uint256 v2,
uint256 v3,
uint256 v4,
uint256 v5,
uint256 v6,
uint256 v7,
uint256 v8
) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40)
mstore(m, v0)
mstore(add(m, 0x20), v1)
mstore(add(m, 0x40), v2)
mstore(add(m, 0x60), v3)
mstore(add(m, 0x80), v4)
mstore(add(m, 0xa0), v5)
mstore(add(m, 0xc0), v6)
mstore(add(m, 0xe0), v7)
mstore(add(m, 0x100), v8)
result := keccak256(m, 0x120)
}
}
/// @dev Returns `keccak256(abi.encode(v0, .., v9))`.
function hash(
bytes32 v0,
bytes32 v1,
bytes32 v2,
bytes32 v3,
bytes32 v4,
bytes32 v5,
bytes32 v6,
bytes32 v7,
bytes32 v8,
bytes32 v9
) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40)
mstore(m, v0)
mstore(add(m, 0x20), v1)
mstore(add(m, 0x40), v2)
mstore(add(m, 0x60), v3)
mstore(add(m, 0x80), v4)
mstore(add(m, 0xa0), v5)
mstore(add(m, 0xc0), v6)
mstore(add(m, 0xe0), v7)
mstore(add(m, 0x100), v8)
mstore(add(m, 0x120), v9)
result := keccak256(m, 0x140)
}
}
/// @dev Returns `keccak256(abi.encode(v0, .., v9))`.
function hash(
uint256 v0,
uint256 v1,
uint256 v2,
uint256 v3,
uint256 v4,
uint256 v5,
uint256 v6,
uint256 v7,
uint256 v8,
uint256 v9
) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40)
mstore(m, v0)
mstore(add(m, 0x20), v1)
mstore(add(m, 0x40), v2)
mstore(add(m, 0x60), v3)
mstore(add(m, 0x80), v4)
mstore(add(m, 0xa0), v5)
mstore(add(m, 0xc0), v6)
mstore(add(m, 0xe0), v7)
mstore(add(m, 0x100), v8)
mstore(add(m, 0x120), v9)
result := keccak256(m, 0x140)
}
}
/// @dev Returns `keccak256(abi.encode(v0, .., v10))`.
function hash(
bytes32 v0,
bytes32 v1,
bytes32 v2,
bytes32 v3,
bytes32 v4,
bytes32 v5,
bytes32 v6,
bytes32 v7,
bytes32 v8,
bytes32 v9,
bytes32 v10
) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40)
mstore(m, v0)
mstore(add(m, 0x20), v1)
mstore(add(m, 0x40), v2)
mstore(add(m, 0x60), v3)
mstore(add(m, 0x80), v4)
mstore(add(m, 0xa0), v5)
mstore(add(m, 0xc0), v6)
mstore(add(m, 0xe0), v7)
mstore(add(m, 0x100), v8)
mstore(add(m, 0x120), v9)
mstore(add(m, 0x140), v10)
result := keccak256(m, 0x160)
}
}
/// @dev Returns `keccak256(abi.encode(v0, .., v10))`.
function hash(
uint256 v0,
uint256 v1,
uint256 v2,
uint256 v3,
uint256 v4,
uint256 v5,
uint256 v6,
uint256 v7,
uint256 v8,
uint256 v9,
uint256 v10
) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40)
mstore(m, v0)
mstore(add(m, 0x20), v1)
mstore(add(m, 0x40), v2)
mstore(add(m, 0x60), v3)
mstore(add(m, 0x80), v4)
mstore(add(m, 0xa0), v5)
mstore(add(m, 0xc0), v6)
mstore(add(m, 0xe0), v7)
mstore(add(m, 0x100), v8)
mstore(add(m, 0x120), v9)
mstore(add(m, 0x140), v10)
result := keccak256(m, 0x160)
}
}
/// @dev Returns `keccak256(abi.encode(v0, .., v11))`.
function hash(
bytes32 v0,
bytes32 v1,
bytes32 v2,
bytes32 v3,
bytes32 v4,
bytes32 v5,
bytes32 v6,
bytes32 v7,
bytes32 v8,
bytes32 v9,
bytes32 v10,
bytes32 v11
) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40)
mstore(m, v0)
mstore(add(m, 0x20), v1)
mstore(add(m, 0x40), v2)
mstore(add(m, 0x60), v3)
mstore(add(m, 0x80), v4)
mstore(add(m, 0xa0), v5)
mstore(add(m, 0xc0), v6)
mstore(add(m, 0xe0), v7)
mstore(add(m, 0x100), v8)
mstore(add(m, 0x120), v9)
mstore(add(m, 0x140), v10)
mstore(add(m, 0x160), v11)
result := keccak256(m, 0x180)
}
}
/// @dev Returns `keccak256(abi.encode(v0, .., v11))`.
function hash(
uint256 v0,
uint256 v1,
uint256 v2,
uint256 v3,
uint256 v4,
uint256 v5,
uint256 v6,
uint256 v7,
uint256 v8,
uint256 v9,
uint256 v10,
uint256 v11
) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40)
mstore(m, v0)
mstore(add(m, 0x20), v1)
mstore(add(m, 0x40), v2)
mstore(add(m, 0x60), v3)
mstore(add(m, 0x80), v4)
mstore(add(m, 0xa0), v5)
mstore(add(m, 0xc0), v6)
mstore(add(m, 0xe0), v7)
mstore(add(m, 0x100), v8)
mstore(add(m, 0x120), v9)
mstore(add(m, 0x140), v10)
mstore(add(m, 0x160), v11)
result := keccak256(m, 0x180)
}
}
/// @dev Returns `keccak256(abi.encode(v0, .., v12))`.
function hash(
bytes32 v0,
bytes32 v1,
bytes32 v2,
bytes32 v3,
bytes32 v4,
bytes32 v5,
bytes32 v6,
bytes32 v7,
bytes32 v8,
bytes32 v9,
bytes32 v10,
bytes32 v11,
bytes32 v12
) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40)
mstore(m, v0)
mstore(add(m, 0x20), v1)
mstore(add(m, 0x40), v2)
mstore(add(m, 0x60), v3)
mstore(add(m, 0x80), v4)
mstore(add(m, 0xa0), v5)
mstore(add(m, 0xc0), v6)
mstore(add(m, 0xe0), v7)
mstore(add(m, 0x100), v8)
mstore(add(m, 0x120), v9)
mstore(add(m, 0x140), v10)
mstore(add(m, 0x160), v11)
mstore(add(m, 0x180), v12)
result := keccak256(m, 0x1a0)
}
}
/// @dev Returns `keccak256(abi.encode(v0, .., v12))`.
function hash(
uint256 v0,
uint256 v1,
uint256 v2,
uint256 v3,
uint256 v4,
uint256 v5,
uint256 v6,
uint256 v7,
uint256 v8,
uint256 v9,
uint256 v10,
uint256 v11,
uint256 v12
) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40)
mstore(m, v0)
mstore(add(m, 0x20), v1)
mstore(add(m, 0x40), v2)
mstore(add(m, 0x60), v3)
mstore(add(m, 0x80), v4)
mstore(add(m, 0xa0), v5)
mstore(add(m, 0xc0), v6)
mstore(add(m, 0xe0), v7)
mstore(add(m, 0x100), v8)
mstore(add(m, 0x120), v9)
mstore(add(m, 0x140), v10)
mstore(add(m, 0x160), v11)
mstore(add(m, 0x180), v12)
result := keccak256(m, 0x1a0)
}
}
/// @dev Returns `keccak256(abi.encode(v0, .., v13))`.
function hash(
bytes32 v0,
bytes32 v1,
bytes32 v2,
bytes32 v3,
bytes32 v4,
bytes32 v5,
bytes32 v6,
bytes32 v7,
bytes32 v8,
bytes32 v9,
bytes32 v10,
bytes32 v11,
bytes32 v12,
bytes32 v13
) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40)
mstore(m, v0)
mstore(add(m, 0x20), v1)
mstore(add(m, 0x40), v2)
mstore(add(m, 0x60), v3)
mstore(add(m, 0x80), v4)
mstore(add(m, 0xa0), v5)
mstore(add(m, 0xc0), v6)
mstore(add(m, 0xe0), v7)
mstore(add(m, 0x100), v8)
mstore(add(m, 0x120), v9)
mstore(add(m, 0x140), v10)
mstore(add(m, 0x160), v11)
mstore(add(m, 0x180), v12)
mstore(add(m, 0x1a0), v13)
result := keccak256(m, 0x1c0)
}
}
/// @dev Returns `keccak256(abi.encode(v0, .., v13))`.
function hash(
uint256 v0,
uint256 v1,
uint256 v2,
uint256 v3,
uint256 v4,
uint256 v5,
uint256 v6,
uint256 v7,
uint256 v8,
uint256 v9,
uint256 v10,
uint256 v11,
uint256 v12,
uint256 v13
) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40)
mstore(m, v0)
mstore(add(m, 0x20), v1)
mstore(add(m, 0x40), v2)
mstore(add(m, 0x60), v3)
mstore(add(m, 0x80), v4)
mstore(add(m, 0xa0), v5)
mstore(add(m, 0xc0), v6)
mstore(add(m, 0xe0), v7)
mstore(add(m, 0x100), v8)
mstore(add(m, 0x120), v9)
mstore(add(m, 0x140), v10)
mstore(add(m, 0x160), v11)
mstore(add(m, 0x180), v12)
mstore(add(m, 0x1a0), v13)
result := keccak256(m, 0x1c0)
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* BYTES32 BUFFER HASHING OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns `keccak256(abi.encode(buffer[0], .., buffer[buffer.length - 1]))`.
function hash(bytes32[] memory buffer) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
result := keccak256(add(buffer, 0x20), shl(5, mload(buffer)))
}
}
/// @dev Sets `buffer[i]` to `value`, without a bounds check.
/// Returns the `buffer` for function chaining.
function set(bytes32[] memory buffer, uint256 i, bytes32 value)
internal
pure
returns (bytes32[] memory)
{
/// @solidity memory-safe-assembly
assembly {
mstore(add(buffer, shl(5, add(1, i))), value)
}
return buffer;
}
/// @dev Sets `buffer[i]` to `value`, without a bounds check.
/// Returns the `buffer` for function chaining.
function set(bytes32[] memory buffer, uint256 i, uint256 value)
internal
pure
returns (bytes32[] memory)
{
/// @solidity memory-safe-assembly
assembly {
mstore(add(buffer, shl(5, add(1, i))), value)
}
return buffer;
}
/// @dev Returns `new bytes32[](n)`, without zeroing out the memory.
function malloc(uint256 n) internal pure returns (bytes32[] memory buffer) {
/// @solidity memory-safe-assembly
assembly {
buffer := mload(0x40)
mstore(buffer, n)
mstore(0x40, add(shl(5, add(1, n)), buffer))
}
}
/// @dev Frees memory that has been allocated for `buffer`.
/// No-op if `buffer.length` is zero, or if new memory has been allocated after `buffer`.
function free(bytes32[] memory buffer) internal pure {
/// @solidity memory-safe-assembly
assembly {
let n := mload(buffer)
mstore(shl(6, lt(iszero(n), eq(add(shl(5, add(1, n)), buffer), mload(0x40)))), buffer)
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* EQUALITY CHECKS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns `a == abi.decode(b, (bytes32))`.
function eq(bytes32 a, bytes memory b) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
result := and(eq(0x20, mload(b)), eq(a, mload(add(b, 0x20))))
}
}
/// @dev Returns `abi.decode(a, (bytes32)) == a`.
function eq(bytes memory a, bytes32 b) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
result := and(eq(0x20, mload(a)), eq(b, mload(add(a, 0x20))))
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* BYTE SLICE HASHING OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the keccak256 of the slice from `start` to `end` (exclusive).
/// `start` and `end` are byte offsets.
function hash(bytes memory b, uint256 start, uint256 end)
internal
pure
returns (bytes32 result)
{
/// @solidity memory-safe-assembly
assembly {
let n := mload(b)
end := xor(end, mul(xor(end, n), lt(n, end)))
start := xor(start, mul(xor(start, n), lt(n, start)))
result := keccak256(add(add(b, 0x20), start), mul(gt(end, start), sub(end, start)))
}
}
/// @dev Returns the keccak256 of the slice from `start` to the end of the bytes.
function hash(bytes memory b, uint256 start) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let n := mload(b)
start := xor(start, mul(xor(start, n), lt(n, start)))
result := keccak256(add(add(b, 0x20), start), mul(gt(n, start), sub(n, start)))
}
}
/// @dev Returns the keccak256 of the bytes.
function hash(bytes memory b) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
result := keccak256(add(b, 0x20), mload(b))
}
}
/// @dev Returns the keccak256 of the slice from `start` to `end` (exclusive).
/// `start` and `end` are byte offsets.
function hashCalldata(bytes calldata b, uint256 start, uint256 end)
internal
pure
returns (bytes32 result)
{
/// @solidity memory-safe-assembly
assembly {
end := xor(end, mul(xor(end, b.length), lt(b.length, end)))
start := xor(start, mul(xor(start, b.length), lt(b.length, start)))
let n := mul(gt(end, start), sub(end, start))
calldatacopy(mload(0x40), add(b.offset, start), n)
result := keccak256(mload(0x40), n)
}
}
/// @dev Returns the keccak256 of the slice from `start` to the end of the bytes.
function hashCalldata(bytes calldata b, uint256 start) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
start := xor(start, mul(xor(start, b.length), lt(b.length, start)))
let n := mul(gt(b.length, start), sub(b.length, start))
calldatacopy(mload(0x40), add(b.offset, start), n)
result := keccak256(mload(0x40), n)
}
}
/// @dev Returns the keccak256 of the bytes.
function hashCalldata(bytes calldata b) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
calldatacopy(mload(0x40), b.offset, b.length)
result := keccak256(mload(0x40), b.length)
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* SHA2-256 HELPERS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns `sha256(abi.encode(b))`. Yes, it's more efficient.
function sha2(bytes32 b) internal view returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, b)
result := mload(staticcall(gas(), 2, 0x00, 0x20, 0x01, 0x20))
if iszero(returndatasize()) { invalid() }
}
}
/// @dev Returns the sha256 of the slice from `start` to `end` (exclusive).
/// `start` and `end` are byte offsets.
function sha2(bytes memory b, uint256 start, uint256 end)
internal
view
returns (bytes32 result)
{
/// @solidity memory-safe-assembly
assembly {
let n := mload(b)
end := xor(end, mul(xor(end, n), lt(n, end)))
start := xor(start, mul(xor(start, n), lt(n, start)))
// forgefmt: disable-next-item
result := mload(staticcall(gas(), 2, add(add(b, 0x20), start),
mul(gt(end, start), sub(end, start)), 0x01, 0x20))
if iszero(returndatasize()) { invalid() }
}
}
/// @dev Returns the sha256 of the slice from `start` to the end of the bytes.
function sha2(bytes memory b, uint256 start) internal view returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let n := mload(b)
start := xor(start, mul(xor(start, n), lt(n, start)))
// forgefmt: disable-next-item
result := mload(staticcall(gas(), 2, add(add(b, 0x20), start),
mul(gt(n, start), sub(n, start)), 0x01, 0x20))
if iszero(returndatasize()) { invalid() }
}
}
/// @dev Returns the sha256 of the bytes.
function sha2(bytes memory b) internal view returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(staticcall(gas(), 2, add(b, 0x20), mload(b), 0x01, 0x20))
if iszero(returndatasize()) { invalid() }
}
}
/// @dev Returns the sha256 of the slice from `start` to `end` (exclusive).
/// `start` and `end` are byte offsets.
function sha2Calldata(bytes calldata b, uint256 start, uint256 end)
internal
view
returns (bytes32 result)
{
/// @solidity memory-safe-assembly
assembly {
end := xor(end, mul(xor(end, b.length), lt(b.length, end)))
start := xor(start, mul(xor(start, b.length), lt(b.length, start)))
let n := mul(gt(end, start), sub(end, start))
calldatacopy(mload(0x40), add(b.offset, start), n)
result := mload(staticcall(gas(), 2, mload(0x40), n, 0x01, 0x20))
if iszero(returndatasize()) { invalid() }
}
}
/// @dev Returns the sha256 of the slice from `start` to the end of the bytes.
function sha2Calldata(bytes calldata b, uint256 start) internal view returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
start := xor(start, mul(xor(start, b.length), lt(b.length, start)))
let n := mul(gt(b.length, start), sub(b.length, start))
calldatacopy(mload(0x40), add(b.offset, start), n)
result := mload(staticcall(gas(), 2, mload(0x40), n, 0x01, 0x20))
if iszero(returndatasize()) { invalid() }
}
}
/// @dev Returns the sha256 of the bytes.
function sha2Calldata(bytes calldata b) internal view returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
calldatacopy(mload(0x40), b.offset, b.length)
result := mload(staticcall(gas(), 2, mload(0x40), b.length, 0x01, 0x20))
if iszero(returndatasize()) { invalid() }
}
}
}
node_modules/sp1-contracts/contracts/src/ISP1Verifier.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
/// @title SP1 Verifier Interface
/// @author Succinct Labs
/// @notice This contract is the interface for the SP1 Verifier.
interface ISP1Verifier {
/// @notice Verifies a proof with given public values and vkey.
/// @dev It is expected that the first 4 bytes of proofBytes must match the first 4 bytes of
/// target verifier's VERIFIER_HASH.
/// @param programVKey The verification key for the RISC-V program.
/// @param publicValues The public values encoded as bytes.
/// @param proofBytes The proof of the program execution the SP1 zkVM encoded as bytes.
function verifyProof(
bytes32 programVKey,
bytes calldata publicValues,
bytes calldata proofBytes
) external view;
}
interface ISP1VerifierWithHash is ISP1Verifier {
/// @notice Returns the hash of the verifier.
function VERIFIER_HASH() external pure returns (bytes32);
}
Compiler Settings
{"viaIR":true,"remappings":["openzeppelin/=node_modules/@openzeppelin/","@openzeppelin/=node_modules/@openzeppelin/","@openzeppelin-upgrades/contracts/=node_modules/@openzeppelin/contracts-upgradeable/","@risc0/contracts/=node_modules/risc0-ethereum/contracts/src/","@solady/=node_modules/solady/","solady/src/=node_modules/solady/src/","solady/utils/=node_modules/solady/src/utils/","@optimism/=node_modules/optimism/","@sp1-contracts/=node_modules/sp1-contracts/contracts/","forge-std/=node_modules/forge-std/","@p256-verifier/contracts/=node_modules/p256-verifier/src/","@eth-fabric/urc/=node_modules/urc/src/","ds-test/=node_modules/ds-test/","src/=contracts/","test/=test/","script/=script/","optimism/=node_modules/optimism/","p256-verifier/=node_modules/p256-verifier/","risc0-ethereum/=node_modules/risc0-ethereum/","sp1-contracts/=node_modules/sp1-contracts/","urc/=node_modules/urc/"],"outputSelection":{"*":{"*":["*"],"":["*"]}},"optimizer":{"runs":200,"enabled":true},"metadata":{"useLiteralContent":false,"bytecodeHash":"ipfs","appendCBOR":true},"libraries":{"contracts/layer1/core/libs/LibInboxSetup.sol":{"LibInboxSetup":"0xf88Ef5437749A225621101BE8C1BE1A0cE967758"},"contracts/layer1/core/libs/LibForcedInclusion.sol":{"LibForcedInclusion":"0xd1a27F331c17eD8Cbb6DAbce67A42d6b8a6B0e14"}},"evmVersion":"prague"}
Contract ABI
[{"type":"constructor","stateMutability":"nonpayable","inputs":[{"type":"uint64","name":"_taikoChainId","internalType":"uint64"},{"type":"address","name":"_sp1RemoteVerifier","internalType":"address"},{"type":"address","name":"_owner","internalType":"address"}]},{"type":"error","name":"InvalidAggregatedProvingHash","inputs":[]},{"type":"error","name":"SP1_INVALID_AGGREGATION_VKEY","inputs":[]},{"type":"error","name":"SP1_INVALID_PARAMS","inputs":[]},{"type":"error","name":"SP1_INVALID_PROGRAM_VKEY","inputs":[]},{"type":"error","name":"SP1_INVALID_PROOF","inputs":[]},{"type":"event","name":"OwnershipTransferStarted","inputs":[{"type":"address","name":"previousOwner","internalType":"address","indexed":true},{"type":"address","name":"newOwner","internalType":"address","indexed":true}],"anonymous":false},{"type":"event","name":"OwnershipTransferred","inputs":[{"type":"address","name":"previousOwner","internalType":"address","indexed":true},{"type":"address","name":"newOwner","internalType":"address","indexed":true}],"anonymous":false},{"type":"event","name":"ProgramTrusted","inputs":[{"type":"bytes32","name":"programVKey","internalType":"bytes32","indexed":false},{"type":"bool","name":"trusted","internalType":"bool","indexed":false}],"anonymous":false},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"acceptOwnership","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"bool","name":"trusted","internalType":"bool"}],"name":"isProgramTrusted","inputs":[{"type":"bytes32","name":"provingProgramVKey","internalType":"bytes32"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"owner","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"pendingOwner","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"renounceOwnership","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"setProgramTrusted","inputs":[{"type":"bytes32","name":"_programVKey","internalType":"bytes32"},{"type":"bool","name":"_trusted","internalType":"bool"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"sp1RemoteVerifier","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint64","name":"","internalType":"uint64"}],"name":"taikoChainId","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"transferOwnership","inputs":[{"type":"address","name":"newOwner","internalType":"address"}]},{"type":"function","stateMutability":"view","outputs":[],"name":"verifyProof","inputs":[{"type":"uint256","name":"","internalType":"uint256"},{"type":"bytes32","name":"_aggregatedProvingHash","internalType":"bytes32"},{"type":"bytes","name":"_proof","internalType":"bytes"}]}]
Contract Creation Code
0x60c0346100b057601f6107fb38819003918201601f19168301916001600160401b038311848410176100b4578084926060946040528339810103126100b05780516001600160401b03811681036100b0578161006c6040610065602061008196016100c8565b92016100c8565b91610076336100dc565b60805260a0526100dc565b6040516106ca90816101318239608051818181610149015261044b015260a051818181610348015261052c0152f35b5f80fd5b634e487b7160e01b5f52604160045260245ffd5b51906001600160a01b03821682036100b057565b600180546001600160a01b03199081169091555f80546001600160a01b03938416928116831782559192909116907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09080a356fe6080806040526004361015610012575f80fd5b5f3560e01c9081630c74de12146105f05750806314bcf3dd146103775780634ddd9b4a14610333578063715018a6146102d057806379ba509714610207578063899e3b1a146101945780638da5cb5b1461016d578063a5a1d0c514610129578063e30c3978146101015763f2fde38b1461008a575f80fd5b346100fd5760203660031901126100fd576004356001600160a01b038116908190036100fd576100b861063d565b600180546001600160a01b031916821790555f80546001600160a01b0316907f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e227009080a3005b5f80fd5b346100fd575f3660031901126100fd576001546040516001600160a01b039091168152602090f35b346100fd575f3660031901126100fd57602060405167ffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b346100fd575f3660031901126100fd575f546040516001600160a01b039091168152602090f35b346100fd5760403660031901126100fd576004356024358015158091036100fd577f4907f7df45057fc970c71422738e90d4fe5fa02f94ec0639584ccc7f6ad3af60916040916101e261063d565b815f526002602052825f2060ff1981541660ff831617905582519182526020820152a1005b346100fd575f3660031901126100fd57600154336001600160a01b039091160361027957600180546001600160a01b03199081169091555f805433928116831782556001600160a01b0316907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09080a3005b60405162461bcd60e51b815260206004820152602960248201527f4f776e61626c6532537465703a2063616c6c6572206973206e6f7420746865206044820152683732bb9037bbb732b960b91b6064820152608490fd5b346100fd575f3660031901126100fd576102e861063d565b600180546001600160a01b03199081169091555f80549182168155906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b346100fd575f3660031901126100fd576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b346100fd5760603660031901126100fd5760243560443567ffffffffffffffff81116100fd57366023820112156100fd5780600401359067ffffffffffffffff82116100fd5736602483830101116100fd5760408211156105e157816020116100fd57602481013590826040116100fd576044810135825f52600260205260ff60405f205416156105d257805f52600260205260ff60405f205416156105c35784156105b45760205f95946105289260a08897604051906b2b22a924a32cafa82927a7a360a11b825267ffffffffffffffff7f00000000000000000000000000000000000000000000000000000000000000001686830152306040830152606082015288608082015220908752825260a46040872094604051928484019687528484526104a560408561061b565b603f19810160646040519889968888019b63020a49e360e51b8d526024890152606060448901525180918160848a01528789015e86810186018c9052601f01601f1916860186810386016023190182880152808601839052930160c484013788601f1984838501010152601f19908519011601010301601f19810183528261061b565b51907f00000000000000000000000000000000000000000000000000000000000000005afa3d156105af573d67ffffffffffffffff811161059b576040519061057b601f8201601f19166020018361061b565b81525f60203d92013e5b1561058c57005b635cf26e7960e11b5f5260045ffd5b634e487b7160e01b5f52604160045260245ffd5b610585565b6318e48a7560e21b5f5260045ffd5b63503473e960e11b5f5260045ffd5b630e5a298b60e01b5f5260045ffd5b63a8907a0360e01b5f5260045ffd5b346100fd5760203660031901126100fd576020906004355f526002825260ff60405f20541615158152f35b90601f8019910116810190811067ffffffffffffffff82111761059b57604052565b5f546001600160a01b0316330361065057565b606460405162461bcd60e51b815260206004820152602060248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152fdfea26469706673582212203922cffc762debc05a06c459b268d059d13e5fd83f6c95843dbca4fd8e5799b864736f6c634300081e00330000000000000000000000000000000000000000000000000000000000028c59000000000000000000000000fbfbfddd6e35da57b7b0f9a2c10e34be70b3a4e90000000000000000000000004779d18931b35540f84b0cd0e9633855b84df7b8
Deployed ByteCode
0x6080806040526004361015610012575f80fd5b5f3560e01c9081630c74de12146105f05750806314bcf3dd146103775780634ddd9b4a14610333578063715018a6146102d057806379ba509714610207578063899e3b1a146101945780638da5cb5b1461016d578063a5a1d0c514610129578063e30c3978146101015763f2fde38b1461008a575f80fd5b346100fd5760203660031901126100fd576004356001600160a01b038116908190036100fd576100b861063d565b600180546001600160a01b031916821790555f80546001600160a01b0316907f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e227009080a3005b5f80fd5b346100fd575f3660031901126100fd576001546040516001600160a01b039091168152602090f35b346100fd575f3660031901126100fd57602060405167ffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000028c59168152f35b346100fd575f3660031901126100fd575f546040516001600160a01b039091168152602090f35b346100fd5760403660031901126100fd576004356024358015158091036100fd577f4907f7df45057fc970c71422738e90d4fe5fa02f94ec0639584ccc7f6ad3af60916040916101e261063d565b815f526002602052825f2060ff1981541660ff831617905582519182526020820152a1005b346100fd575f3660031901126100fd57600154336001600160a01b039091160361027957600180546001600160a01b03199081169091555f805433928116831782556001600160a01b0316907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09080a3005b60405162461bcd60e51b815260206004820152602960248201527f4f776e61626c6532537465703a2063616c6c6572206973206e6f7420746865206044820152683732bb9037bbb732b960b91b6064820152608490fd5b346100fd575f3660031901126100fd576102e861063d565b600180546001600160a01b03199081169091555f80549182168155906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b346100fd575f3660031901126100fd576040517f000000000000000000000000fbfbfddd6e35da57b7b0f9a2c10e34be70b3a4e96001600160a01b03168152602090f35b346100fd5760603660031901126100fd5760243560443567ffffffffffffffff81116100fd57366023820112156100fd5780600401359067ffffffffffffffff82116100fd5736602483830101116100fd5760408211156105e157816020116100fd57602481013590826040116100fd576044810135825f52600260205260ff60405f205416156105d257805f52600260205260ff60405f205416156105c35784156105b45760205f95946105289260a08897604051906b2b22a924a32cafa82927a7a360a11b825267ffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000028c591686830152306040830152606082015288608082015220908752825260a46040872094604051928484019687528484526104a560408561061b565b603f19810160646040519889968888019b63020a49e360e51b8d526024890152606060448901525180918160848a01528789015e86810186018c9052601f01601f1916860186810386016023190182880152808601839052930160c484013788601f1984838501010152601f19908519011601010301601f19810183528261061b565b51907f000000000000000000000000fbfbfddd6e35da57b7b0f9a2c10e34be70b3a4e95afa3d156105af573d67ffffffffffffffff811161059b576040519061057b601f8201601f19166020018361061b565b81525f60203d92013e5b1561058c57005b635cf26e7960e11b5f5260045ffd5b634e487b7160e01b5f52604160045260245ffd5b610585565b6318e48a7560e21b5f5260045ffd5b63503473e960e11b5f5260045ffd5b630e5a298b60e01b5f5260045ffd5b63a8907a0360e01b5f5260045ffd5b346100fd5760203660031901126100fd576020906004355f526002825260ff60405f20541615158152f35b90601f8019910116810190811067ffffffffffffffff82111761059b57604052565b5f546001600160a01b0316330361065057565b606460405162461bcd60e51b815260206004820152602060248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152fdfea26469706673582212203922cffc762debc05a06c459b268d059d13e5fd83f6c95843dbca4fd8e5799b864736f6c634300081e0033
External libraries
LibForcedInclusion : 0xd1a27F331c17eD8Cbb6DAbce67A42d6b8a6B0e14
LibInboxSetup : 0xf88Ef5437749A225621101BE8C1BE1A0cE967758